• Title/Summary/Keyword: Potential Impact

검색결과 2,268건 처리시간 0.046초

면내하중을 받는 복합적층판에 대한 충격하중 및 음향 해석 (Impact force and acoustic analysis on composite plates with in-plane loading)

  • 김성준;박일경;안석민
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.244-249
    • /
    • 2011
  • The potential hazards resulting from a low-velocity impact (bird-strike, tool drop, runway debris, etc.) on aircraft structures, such as engine nacelle or a leading edges, has been a long-term concern to the aircraft industry. Certification authorities require that exposed aircraft components must be tested to prove their capability to withstand low-velocity impact without suffering critical damage. In most of the past research studies unloaded specimens have been used for impact tests, however, in reality it is much more likely that a composite structure is exposed to a certain stress state when it is being impacted, which can have a significant effect on the impact performance. And the radiated impact sound induced by impact is analyzed for the damage detection evaluation. In this study, an investigation was undertaken to evaluate the effect in-plane loading on the impact force and sound of composite laminates numerically.

  • PDF

생태계교란식물의 확산 영향 예측에 따른 저감대책 시나리오 선정 (Selection of Mitigation Scenarios Based on Prediction of the Dispersion Impact of Ecosystem-Disturbing Plant Species on Ecosystems)

  • 이상욱;김윤지;정혜인;이지연;유영재;이관규;성현찬;전성우
    • 한국환경복원기술학회지
    • /
    • 제27권4호
    • /
    • pp.15-27
    • /
    • 2024
  • Ecosystem-disturbing plant species pose a significant threat to native ecosystems due to their high reproductive capacity, making it essential to monitor their distribution and develop effective mitigation strategies. Consequently, it is crucial to enhance the evaluation of the impacts of these species in environmental impact assessments by incorporating scientific evidence alongside qualitative assessments. This study introduces a dispersal model into the species distribution model to simulate the potential spread of ecosystem-disturbing plant species, reflecting their ecological characteristics. Additionally, we developed mitigation scenarios and quantitatively calculated reduction rates to propose effective mitigation strategies. The species distribution model showed a reliable AUC (Area Under the Curve) of at least 0.890. The dispersal model's results were also credible, with 31 out of 34 validation coordinates falling within the predicted spread range. Simulating the impact of the spread of ecosystem-disturbing plant species over the next five years revealed that one project site had potential habitats for Ambrosia artemisiifolia, necessitating robust mitigation measures such as seed removal. Another project site, with potential habitats for Symphyotrichum pilosum, indicated that physical removal methods within the site were effective due to the species' relatively short dispersal distance. These findings can serve as fundamental data for project executors and reviewers in evaluating the impact of the spread of ecosystem-disturbing plant species during the planning stages of projects.

Vehicle-induced aerodynamic loads on highway sound barriers part 2: numerical and theoretical investigation

  • Wang, Dalei;Wang, Benjin;Chen, Airong
    • Wind and Structures
    • /
    • 제17권5호
    • /
    • pp.479-494
    • /
    • 2013
  • The vehicle-induced aerodynamic loads bring vibrations to some of the highway sound barriers, for they are designed in consideration of natural wind loads only. As references to the previous field experiment, the vehicle-induced aerodynamic loads is investigated by numerical and theoretical methodologies. The numerical results are compared to the experimental one and proved to be available. By analyzing the flow field achieved in the numerical simulation, the potential flow is proved to be the main source of both head and wake impact, so the theoretical model is also validated. The results from the two methodologies show that the shorter vehicle length would produce larger negative pressure peak as the head impact and wake impact overlapping with each other, and together with the fast speed, it would lead to a wake without vortex shedding, which makes the potential hypothesis more accurate. It also proves the expectation in vehicle-induced aerodynamic loads on Highway Sound Barriers Part1: Field Experiment, that max/min pressure is proportional to the square of vehicle speed and inverse square of separation distance.

Unveiling the Gastrointestinal Microbiome Symphony: Insights Into Post-Gastric Cancer Treatment Microbial Patterns and Potential Therapeutic Avenues

  • Chan Hyuk Park
    • Journal of Gastric Cancer
    • /
    • 제24권1호
    • /
    • pp.89-98
    • /
    • 2024
  • This review delved into the intricate relationship between the gastrointestinal microbiome and gastric cancer, particularly focusing on post-treatment alterations, notably following gastrectomy, and the effects of anticancer therapies. Following gastrectomy, analysis of fecal samples revealed an increased presence of oral cavity aerotolerant and bile acid-transforming bacteria in the intestine. Similar changes were observed in the gastric microbiome, highlighting significant alterations in taxon abundance and emphasizing the reciprocal interaction between the oral and gastric microbiomes. In contrast, the impact of chemotherapy and immunotherapy on the gut microbiome was subtle, although discernible differences were noted between treatment responders and non-responders. Certain bacterial taxa showed promise as potential prognostic markers. Notably, probiotics emerged as a promising approach for postgastrectomy recovery, displaying the capacity to alleviate inflammation, bolster immune responses, and maintain a healthy gut microbiome. Several strains, including Bifidobacterium, Lactobacillus, and Clostridium butyricum, exhibited favorable outcomes in postoperative patients, suggesting their potential roles in comprehensive patient care. In conclusion, understanding the intricate interplay between the gastrointestinal microbiome and gastric cancer treatment offers prospects for predicting responses and enhancing postoperative recovery. Probiotics, with their positive impact on inflammation and immunity, have emerged as potential adjuncts in patient care. Continued research is imperative to fully harness the potential of microbiome-based interventions in the management of gastric cancer.

태양에너지 가용잠재량 자원지도 분석 (The Analysis of a Potential Solar Energy Resource Map)

  • 정종철
    • 환경영향평가
    • /
    • 제21권4호
    • /
    • pp.573-579
    • /
    • 2012
  • Many countries have recently been expanding efforts for low-carbon global economy to solve the problem of global warming. Development and research for various types of new reusable energy is on the rise throughout the world. The most promising source of energy is the solar photovoltaic energy and the government take an initiative to establish both short-term and long-term policies to develop the solar energy potential resource map. The solar energy and industrialize area researched by GIS methods for optimum site for solar power transfer system. This study attempts to address the hot issue of the development and suitability of the solar photovoltaic energy site using GIS spatial analysis. We need to analyze and describe the solar technology, green energy policies and the energy market trend of the field.

충격하중계수의 크기에 따른 유한평판의 충격하중 작용점에서의 응력해석 (Stress Analysis at an Impact Loading Point of Finite Plates according to the dimensions of Impact Loading Parameter)

  • 김지훈;심재기;양인영
    • 한국안전학회지
    • /
    • 제11권1호
    • /
    • pp.46-52
    • /
    • 1996
  • In this paper, an analytical method is proposed to find the dimensions of impact stresses with using the dimensions of impact loading parameter regardless of mass of impactor, velocity of impactor, and plate thickness. In analytical method of Impulsive stresses, the three-dimensional dynamic theory of elasticity using rectangular coordinates and the potential theory of displacement are utilized, and when the measurement of Impact loading is difficult especially for a steel ball colliding on an infinite plate, the impact loading can be obtained by using the classical plate theory and Hertz’s contact theory. And in the numerical analysis, the fast Fourier transform (F. F. T.) algorithm and the numerical inverse Laplace transformation are used because the analysis of impact loading Is difficult to obtain solutions by using the thress-dimensional dynamic theory of elasticity.

  • PDF

Analysis of environmental impact of activated carbon production from wood waste

  • Kim, Mi Hyung;Jeong, In Tae;Park, Sang Bum;Kim, Jung Wk
    • Environmental Engineering Research
    • /
    • 제24권1호
    • /
    • pp.117-126
    • /
    • 2019
  • Activated carbon is carbon produced from carbonaceous source materials, such as coconut shells, coals, and woods. In this study, an activated carbon production system was analyzed by carbonization and activation in terms of environmental impact and human health. The feedstock of wood wastes for the system reduced fossil fuel consumption and disposal costs. Life cycle assessment methodology was used to analyze the environmental impacts of the system, and the functional unit was one tonne of wood wastes. The boundary expansion method was applied to analyze the wood waste recycling process for activated carbon production. An environmental credit was quantified by avoided impact analysis. Specifically, greenhouse gases discharged from 1 kg of activated carbon production system by feeding wood wastes were evaluated. We found that this system reduced global warming potential of approximately $9.69E+00kg\;CO_2-eq$. compared to the process using coals. The environmental benefits for activated carbon production from wood wastes were analyzed in contrast to other disposal methods. The results showed that the activated carbon system using one tonne of wood wastes has an environmental benefit of $163kg\;CO_2-eq$. for reducing global warming potential in comparison with the same amount of wood wastes disposal by landfilling.

Dynamic response analysis of nanoparticle-nanobeam impact using nonlocal theory and meshless method

  • Isa Ahmadi;Mohammad Naeim Moradi;Mahdi Davar Panah
    • Structural Engineering and Mechanics
    • /
    • 제89권2호
    • /
    • pp.135-153
    • /
    • 2024
  • In this study, the impact response of a nanobeam with a moving nanoparticle is investigated. Timoshenko beam theory is used to model the nanobeam behavior and nonlocal elasticity theory is used to consider the effects of small dimensions. The interaction between the nanoparticle and nanobeam has been described using Lennard-Jones potential theory and the equations are discretized by the radial basis meshless method and a mathematical model is presented for the nanobeam-nanoparticle system. Validation of the proposed model is achieved by comparing the obtained natural frequencies with reference values, demonstrating good agreement. Dimensionless frequency analysis reveals a decrease with increasing nonlocal parameter, pointing out a toughening effect in nanobeam. The dynamic response of the nanobeam and nanoparticle is obtained by time integration of equations of motion using Newmark and Wilson-𝜃 methods. A comparative analysis of the two methods is conducted to determine the most suitable approach for this study. As a distinctive aspect in this study, the analysis incorporates the deformation of the nanobeam resulting from the nanoparticle-nanobeam interaction when calculating the Lennard-Jones force in the nanobeam-nanoparticle system. The numerical findings explore the impact of various factors, including the nonlocal parameter, initial velocity, nanoparticle mass, and boundary conditions.

스켈링이론에 가중치를 적용한 DGMOSFET의 문턱전압이하 특성 분석 (Analysis of Subthreshold Characteristics for Double Gate MOSFET using Impact Factor based on Scaling Theory)

  • 정학기
    • 한국정보통신학회논문지
    • /
    • 제16권9호
    • /
    • pp.2015-2020
    • /
    • 2012
  • 본 연구에서는 이중게이트(Double Gate; DG) MOSFET에 스켈링이론을 적용할 때 두 개의 게이트에 의한 효과를 반영하기 위하여 스켈링인자에 가중치를 적용하여 문턱전압이하 특성을 해석하였다. 포아송방정식에 의한 전위분포를 구하기 위하여 전하분포는 가우스분포함수를 이용할 것이며 이의 타당성은 이미 여러 논문에서 입증하였다. 이 전위분포를 이용하여 단채널효과 중 문턱전압이동, 문턱전압이하 스윙, 드레인유도장벽감소 등을 스켈링인자에 대한 가중치의 변화에 따라 관찰하였다. 이중게이트 MOSFET의 구조적 특성상 채널길이에 대한 가중치는 0.1에서 1까지 사용하였으며 채널두께에 대한 가중치는 1에서 2까지 가중치를 사용하였다. 결과적으로 문턱전압 이하 스윙은 스켈링인자에 따라 거의 변화가 없었으나 가중치에 따라 변화하였으며 문턱전압이동 및 드레인유도 장벽감소 등은 스켈링인자에 따라 그리고 가중치에 따라 큰 변화를 보이는 것을 알 수 있었다.

Impact performance study of filled thin-walled tubes with PM-35 steel core

  • Kunlong Tian;Chao Zhao;Yi Zhou;Xingu Zhong;Xiong Peng;Qunyu Yang
    • Structural Engineering and Mechanics
    • /
    • 제91권1호
    • /
    • pp.75-86
    • /
    • 2024
  • In this paper, the porous metal PM-35 is proposed as the filler material of filled thin-walled tubes (FTTs), and a series of experimental study is conducted to investigate the dynamic behavior and energy absorption performance of PM-35 filled thin-walled tubes under impact loading. Firstly, cylinder solid specimens of PM-35 steel are tested to investigate the impact mechanical behavior by using the Split Hopkinson pressure bar set (SHP); Secondly, the filled thin-walled tube specimens with different geometric parameters are designed and tested to investigate the feasibility of PM-35 steel applied in FTTs by the orthogonal test. According to the results of this research, it is concluded that PM-35 steel is with the excellent characteristics of high energy absorption capacity and low yield strength, which make it a potential filler material for FTTs. The micron-sizes pore structure of PM-35 is the main reason for the macroscopic mechanical behavior of PM-35 steel under impact loading, which makes the material to exhibit greater deformation when subjected to external forces and obviously improve the toughness of the material. In addition, PM-35 steel core-filled thin-wall tube has excellent energy absorption ability under high-speed impact, which shows great application potential in the anti-collision structure facilities of high-speed railway and maglev train. The parameter V0 is most sensitive to the energy absorption of FTT specimens under impact loading, and the sensitivity order of different variations to the energy absorption is loading speed V0>D/t>D/L. The loading efficiency of the FTT is affected by its different geometry, which is mainly determined by the sleeve material and the filling material, which are not sensitive to changes in loading speed V0, D/t and D/L parameters.