DOI QR코드

DOI QR Code

Selection of Mitigation Scenarios Based on Prediction of the Dispersion Impact of Ecosystem-Disturbing Plant Species on Ecosystems

생태계교란식물의 확산 영향 예측에 따른 저감대책 시나리오 선정

  • Lee, Sang-Wook (Dept. of Environmental Science & Ecological Engineering, Korea University) ;
  • Kim, Yoon-Ji (Ojeong Resilience Institute, Korea University) ;
  • Chung, Hye-In (Ojeong Resilience Institute, Korea University) ;
  • Lee, Ji-Yeon (Dept. of Environmental Science & Ecological Engineering, Korea University) ;
  • Yoo, Young-Jae (Ojeong Resilience Institute, Korea University) ;
  • Lee, Gwan-Gyu (Ojeong Resilience Institute, Korea University) ;
  • Sung, Hyun-Chan (Ojeong Resilience Institute, Korea University) ;
  • Jeon, Seong-Woo (Division of Environmental Science & Ecological Engineering, Korea University)
  • 이상욱 (고려대학교 환경생태공학과) ;
  • 김윤지 (고려대학교 오정리질리언스센터) ;
  • 정혜인 (고려대학교 오정리질리언스센터) ;
  • 이지연 (고려대학교 환경생태공학과) ;
  • 유영재 (고려대학교 오정리질리언스센터) ;
  • 이관규 (고려대학교 오정리질리언스센터) ;
  • 성현찬 (고려대학교 오정리질리언스센터) ;
  • 전성우 (고려대학교 환경생태공학부)
  • Received : 2024.06.21
  • Accepted : 2024.07.19
  • Published : 2024.08.30

Abstract

Ecosystem-disturbing plant species pose a significant threat to native ecosystems due to their high reproductive capacity, making it essential to monitor their distribution and develop effective mitigation strategies. Consequently, it is crucial to enhance the evaluation of the impacts of these species in environmental impact assessments by incorporating scientific evidence alongside qualitative assessments. This study introduces a dispersal model into the species distribution model to simulate the potential spread of ecosystem-disturbing plant species, reflecting their ecological characteristics. Additionally, we developed mitigation scenarios and quantitatively calculated reduction rates to propose effective mitigation strategies. The species distribution model showed a reliable AUC (Area Under the Curve) of at least 0.890. The dispersal model's results were also credible, with 31 out of 34 validation coordinates falling within the predicted spread range. Simulating the impact of the spread of ecosystem-disturbing plant species over the next five years revealed that one project site had potential habitats for Ambrosia artemisiifolia, necessitating robust mitigation measures such as seed removal. Another project site, with potential habitats for Symphyotrichum pilosum, indicated that physical removal methods within the site were effective due to the species' relatively short dispersal distance. These findings can serve as fundamental data for project executors and reviewers in evaluating the impact of the spread of ecosystem-disturbing plant species during the planning stages of projects.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 ICT기반 환경영향평가 의사결정 지원 기술개발사업의 지원을 받아 연구되었습니다(2020002990009).

References

  1. Ahn HG and Lim CH. 2022. Assessing habitat suitability for timber species in South Korea under SSP scenarios. Korean Journal of Environmental Biology 40(4): 567-578.
  2. Bang SW. 2014. Environmental Impact Assessment Plan of Invasive Alien Plants in Korea. Korea Environment Institute.
  3. Chmielewski JG and Semple JC. 2001. The biology of Canadian weeds. 114. Symphyotrichum pilosum (Willd.) Nesom (Aster pilosus Willd.). Canadian Journal of Plant Science 81(4): 851-865.
  4. Choi YY.Cho HJ.Hwang JH.Kim YJ, Lim N O.Lee JY.Lee JH.Sung MJ, Jeon SW and Sung HC. 2021. Complaint-based Data Demands for Advancement of Environmental Impact Assessment. 2021. Journal of the Korea Society of Environmental Restoration Technology 24(6): 49-65.
  5. Cho KH and Lee, SH. 2015. Prediction of changes in the potential distribution of a waterfront alien plant, Paspalum distichum var. indutum, under climate change in the Korean Peninsula. Ecology and resilient infrastructure 2(3): 206-215.
  6. Chung HI.Choi Y.Yoo Y.Engler R.Lee K and Jeon SW. 2022. Integrated spatial model based evaluation methodology for optimal invasive species management: common ragweed in the Republic of Korea. Environmental Research Letters 17(3): 034047.
  7. Elith J and Leathwick JR. 2009. Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40: 677.
  8. Engler R and Guisan A. 2009. MigClim: predicting plant distribution and dispersal in a changing climate. Diversity and distributions 15(4): 590-601.
  9. Engler R.Randin CF.Vittoz P.Czaka T. Beniston M.Zimmermann NE and Guisan A. 2009. Predicting future distributions of mountain plants under climate change: does dispersal capacity matter?. Ecography 32: 34-45
  10. Jang JY.Cho NW and Lee MJ. 2019. Standardization Plan for Activation of Environmental Impact Assessment based on Spatial Information. Korean Journal of Remote Sensing 35(3): 433-446.
  11. Jung BG and Oh CH. 2013 Exotic Plant and Conservation in Baekdudaegan Mountains Damaged Area - Between Busoobong and Samdobong -. Korean Society of Environment & Ecology conference papers 23(2): 53-54.
  12. Khan S and Verma S. 2022. Ensemble modeling to predict the impact of future climate change on the global distribution of Olea europaea subsp. cuspidata. Frontiers in Forests and Global Change 5.
  13. Kim DW.Jin DY.Song YM.Son SW.Yoon JH and Kim GH. 2020. Construction of the Invasive Alien Plants Distribution Using Drone and Image Learning. Journal of the Association of Korean Geographers 9(1): 103-114.
  14. KLIC. 2024. Biodiversity Conservation and Utilization Act. The Korean Law Information Center. https://www.law.go.kr. Accessed Jun 20, 2024.
  15. Kwon HS. 2014. Applying Ensemble Model for Identifying Uncertainty in the Species Distribution Models. Journal of the Korean Society for Geospatial Information System 22(4): 47-52.
  16. Montagnani C.Gentili R.Smith M.Guarino MF and Citterio S. 2017. The worldwide spread, success, and impact of ragweed (Ambrosia spp.). Critical Reviews in Plant Sciences 36(3): 139-178.
  17. Lee GG.Lee SH.Kim GH and Lee JH. 2011. Improve of Biotope-Area-Ratio-IndiAtor and Appraisal System AppliAble to Environmental Impact Assessment Projects. Journal of the Korea Society of Environmental Restoration Technology 14(5): 113-125.
  18. Lee IY.Kim SH and Hong SH. 2021. Occurrence Characteristics and Management of Invasive Weeds, Ambrosia artemisiifolia, Ambrosia trifida and Humulus japonicus. Weed& Turfgrass Science 10(3): 227-242.
  19. Lee IY.Kim SH.Lee YH.Pradeep A and Hong SH. 2023. Occurrence and Management of an Invasive Plant in Korea: Symphyotrichum pilosum. Weed&Turfgrass Science 12(4): 353-363.
  20. Lee SW.Jang, RI.Oh HS and Jeon SW. 2023. Selection and Management Strategies for Restoration and Conservation Target Sites of Mankyua chejuense using Species Distribution Models. Journal of the Korean Society of Environmental Restoration Technology 26(3): 29-42.
  21. Lemke A.Kowarik I and von der Lippe, M. 2019. How traffic facilitates population expansion of invasive species along roads: the case of common ragweed in Germany. Journal of Applied Ecology 56(2): 413-422.
  22. Lurgi M.Brook BW.Saltre F and Fordham DA. 2015. Modelling range dynamics under global change: which framework and why?. Methods in Ecology and Evolutionl. 6: 247-56
  23. Ministry of Environment. 2021. Information for the Field Management of Invasive Alien Species in Korea.
  24. Morin X and Thuiller W. 2009 Comparing niche-and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology 90: 1301-1313.
  25. Park HC.Lim JC.Lee JH and Lee GG. 2017. Predicting the potential distributions of invasive species using the Landsat imagery and MaxEnt: Focused on. Journal of the Korean Society of Environmental Restoration Technology 20(1): 1-12.
  26. Park JS.Lee H.Choi D and Kim Y. 2021. Spatially Varying Relationships between Alien Plant Distributions and Environmental Factors in South Korea. Plants 10(7): 1377.
  27. Park SH and Lee SH. 2018. A Study on Management and Present-Condition of Invasive Alien Species. Journal of the Korea Academia-Industrial 19(11): 488-496.
  28. Park SJ.Lee DK and Jeong SG. 2021. A study on the Land-Use Related Assessment Factors in Korean Environmental Impact Assessment. Journal of Environmental Impact Assessment 30(5): 297-304.
  29. Phillips SJ and Dudik M. 2008. Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation. Ecography 31: 161-175.
  30. Ryu TB.Lim JC.Lee CH.Kim EJ and Choi BK. 2017. Distribution of Invasive Species in Metropolitan Busan, South Korea. Journal of Life Science 27(4): 408-416.
  31. Sheppard AW.Shaw RH and Sforza R. 2006. Top 20 environmental weeds for classical biological control in Europe: a review of opportunities, regulations and other barriers to adoption Weed Res 46: 93-117.
  32. Sintayehu DW.Egeru A.Ng WT and Cherenet E. 2020. Regional dynamics in distribution of Prosopis juliflora under predicted climate change in Africa. Tropical Ecology 61: 437-445.
  33. Thuiller W.Albert C.Araujo, MB.Berry P M.Cabeza M.Guisan A.Hickler T. Midgley GF.Paterson J.Schurr FM. Sykes MT and Zimmermann NE. 2008. Predicting global change impacts on plant species' distributions: future challenges. Perspectives in Plant Ecology, Evolution and Systematics 9: 137-152.
  34. Vitalos, M and Karrer, G. 2009. Dispersal of Ambrosia artemisiifolia seeds along roads: the contribution of traffic and mowing machines. Neobiota 8: 53-60.
  35. Yang JH.Park SH.Kim TH and Hwang SI. 2016. Study on the soil related assessment factors in Korean Environmental Impact Assessment. Journal of Environmental Impact Assessment 25(1): 41-50.