• Title/Summary/Keyword: Postural analysis

Search Result 232, Processing Time 0.022 seconds

Physiological and Subjective Measures of Anxiety with Repeated Exposure to Virtual Construction Sites at Different Heights

  • Sachini N.K. Kodithuwakku Arachchige;Harish Chander;Alana J. Turner;Alireza Shojaei;Adam C. Knight;Aaron Griffith;Reuben F. Burch;Chih-Chia Chen
    • Safety and Health at Work
    • /
    • v.14 no.3
    • /
    • pp.303-308
    • /
    • 2023
  • Background: Occupational workers at altitudes are more prone to falls, leading to catastrophic outcomes. Acrophobia, height-related anxiety, and affected executive functions lead to postural instabilities, causing falls. This study investigated the effects of repeated virtual height exposure and training on cognitive processing and height-related anxiety. Methods: Twenty-eight healthy volunteers (age 20.48 ± 1.26 years; mass 69.52 ± 13.78 kg) were recruited and tested in seven virtual environments (VE) [ground (G), 2-story altitude (A1), 2-story edge (E1), 4-story altitude (A2), 4-story edge (E2), 6-story altitude (A3), and 6-story edge (E3)] over three days. At each VE, participants identified occupational hazards present in the VE and completed an Attitude Towards Heights Questionnaire (ATHQ) and a modified State-Trait Anxiety Inventory Questionnaire (mSTAIQ). The number of hazards identified and the ATHQ and mSTAIQ scores were analyzed using a 7 (VE; G, A1, A2, A3, E1, E2, E3) x 3 (DAY; DAY 1, DAY 2, DAY 3) factorial repeated measures analysis of variance. Results: The participants identified the lowest number of hazards at A3 and E3 VEs and on DAY 1 compared to other VEs and DAYs. ATHQ scores were lowest at G, A1, and E1 VEs. Conclusion: Cognitive processing is negatively affected by virtual altitudes, while it improves with short-term training. The features of virtual reality, such as higher involvement, engagement, and reliability, make it a better training tool to be considered in ergonomic settings. The findings of this study will provide insights into cognitive dual-tasking at altitude and its challenges, which will aid in minimizing occupational falls.

Reproducibility of Trunk Control Assessment and the Clinical Utility of the Distinguishing Barthel Index in Chronic Stroke Patients (만성 뇌졸중 환자들의 체간 조절 평가의 재현성과 Barthel Index구분을 위한 임상 유용성)

  • Seung-Heon An;Dae-Sung Park
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.19 no.3
    • /
    • pp.55-63
    • /
    • 2024
  • PURPOSE: This study examined the test-retest reliability and clinical utility of the Modified Trunk Impairment Scale (mTIS), Trunk Control Test (TCT), and Postural Assessment Scale for Stroke - Trunk Control (PASS-TC) in patients with chronic stroke. METHODS: Thirty-eight stroke patients were reassessed using the mTIS, TCT, and PASS-TC with a seven-day interval between assessments. The test-retest reliability was evaluated using the intraclass correlation coefficient (ICC2,1), the standard error of measurement (SEM), the minimal detectable change (MDC), and MDC%, as well as Bland-Altman analysis. The relationship between the mTIS, TCT, PASS-TC scores, and the Barthel Index (BI) was also investigated. RESULTS: The test-retest reliability for the mTIS, TCT, and PASS-TC was high, with ICC values ranging from .91 to .94 (95% confidence interval: .83-.97). The MDCs for the mTIS and TCT were 2.35 and 13.9, respectively, while the MDC for the P ASS-TC was 2.54, all below 20% of the maximum possible score, indicating reliable measurement. The optimal mTIS cut-off score for distinguishing between mild (75-95 points) and severe (50-74 points) dependence on the BI was ≥ 9.5, with an accuracy of 79%. Patients with an mTIS score ≥ 9.5 (out of 15) showed an 18-fold higher likelihood of achieving a mild level of functional independence than those with a score < 9.5. CONCLUSION: The mTIS, TCT, and PASS-TC showed high test-retest reliability and no systematic errors in chronic stroke patients. The MDC values were reliable, indicating meaningful change. Among these, the mTIS is a sensitive and a useful tool for predicting functional independence in clinical practice and is straightforward to apply.

Photoelastic analysis of the Stress distribution on an intervertebral disc (추간판 응력분포에 대한 광탄성 해석)

  • Shin, Hyun-Kug;Lee, Jae-Chang;Ahn, Myun-Whan;Ahn, Jong-Chul;Ihn, Joo-Chul
    • Journal of Yeungnam Medical Science
    • /
    • v.6 no.2
    • /
    • pp.223-239
    • /
    • 1989
  • To observe the change in the status of stresses according to three different postural angulation of an intervertebral disc with or without nucleus pulposus, 6 specimens of a 3-dimensional photoelastic model of the s pine were made of epoxy. The nucleus pulposus portion was replaced with silicon in three models, and the three were made without silicon. Through axial application of a vertical compressive load of 8kg, the peculiar patterns of the isochromatic fringes were observed. Stresses on the intervertebral disc were analyzed according to three different postural angulations of the intervertebral disc with the nucleus pulposus and without the nucleus pulposus. The results of these study are as follow : 1. In an erect neutral posture with the nucleus pulposus, the stress concentration was much increased at the posterior portion rather than at the anterior portion. Also, the high stress was concentrated at the medial and central portion. In an erect neutral posture without the nucleus pulposus, the stress concentration was much increased at the anterior portion rather than at the posterior portion and the stress distribution seemed to be locally concentrated. 2. In a maximal flexed posture, the stress concentration was much increased at the posterior portion rather than at the anterior portion. Comparing the presence of the nucleus pulposus with the absence of the nucleus pulposus, the stress concentration was lower at the anterior portion in the presence of the nucleus pulposus than in the absence of the nucleus pulposus. However, the stress distribution at the posterior portion was nearly same in the two groups. According to the analysis of the stress distribution diagram, as a whole, the stress pattern around the disc was evenly distributed. 3. In a maximal extended posture, the higher concentration of the stress distribution at the anterior and medial portion rather than in the posterior and lateral portion was observed. The stress concentration was higher in the presence of the nucleus pulposus than in the absence of the nucleus pulposus. 4. Comparing the maximal flexed posture with the erect neutral posture, the stress concentration in the flexed posture was much decreased in the posterior portion rather than in the erect neutral posture, and an even distribution of the stress pattern in the flexed posture was observed. 5. In the presence of the nucleus pulposus, at the anterior and posterior portion, the stress concentration in the flexed posture was much decreased compared with the extended posture. In the absence of the nucleus pulposus, at the anterior and posterior portion, the stress concentration in the extended posture was much decreased compared with the flexed posture.

  • PDF

The Analysis of relation to brain iron deposition of Parkinson's Disease using Quantitative Susceptibility Mapping (정량적 자화율 맵핑을 통한 뇌 철분 침착과 파킨슨병의 연관성 분석)

  • Gyu-Ri Jeon;Han-Gyul Lee;Seung-won Kwon;Seung-Yeon Cho;Woo-Sang Jung;Sang-Kwan Moon;Jung-Mi Park;Chang-Nam Ko;Seong-Uk Park
    • The Journal of Korean Medicine
    • /
    • v.45 no.1
    • /
    • pp.150-164
    • /
    • 2024
  • Objectives: This study aimed to investigate the levels of brain iron deposition in Parkinson's disease (PD) patients using Quantitative Susceptibility Mapping (QSM) and to determine whether distinctions compared to the general population exist. Furthermore, we examined potential variations in iron deposition among different PD subtypes. Methods: Structural brain imaging was conducted on 75 participants at Gangdong Kyung Hee University Hospital between August 2017 and May 2020. PD patients were categorized into Tremor Dominant (TD) and Postural Instability and Gait Difficulty (PIGD) subtypes. Voxel-based morphometry and QSM were employed to compare voxel-wise magnetic susceptibility across the entire brain between Normal Controls (NC) and PD groups. Subsequently, QSM values were compared between TD and PIGD groups. Results: QSM values were compared among 46 PD patients and 23 normal controls, as well as between TD (n=22) and PIGD (n=24) groups. Voxel-based QSM analysis revealed no significant differences between groups. Similarly, ROI-based QSM analysis showed no significant distinctions. Conclusions: No significant variations were observed between the PD patient group, NC group, or PD subtypes. This study systematically compared QSM values across a broad range of brain regions potentially linked to PD pathology. Additionally, the subdivision of the PD group into TD and PIGD subtypes for QSM-based iron deposition analysis represents a meaningful and innovative approach.

Postural Control in Brain Damage Patients According to Moving Surround (뇌기능 장애 환자의 가상영상(Moving Sorround) 자극에 따른 자세 균형 제어)

  • 김연희;최종덕;이성범;김종윤;이석준;박찬희;김남균
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.11a
    • /
    • pp.233-244
    • /
    • 2002
  • The purpose of this study is to assess the ability of balance control in moving surround using head mount device and force platform and to examine the clinical usefulness of COP parameters. Fifteen patients with stroke and healthy persons were participated. COP parameters were obtained as total path distance, frequency of anterior-posterior and medial-lateral component by FFT analysis, weight-spectrum analysis in the two different conditions; (1) in comfortable standing with opened or closed eyes, (2) in virtual moving surround delivered using HMD to four different moving pattern. In virtual moving surround setting, moving pattern was composed of close-far, superior-inferior tilting(pitch), right-left tilting(roll) and horizontal rotation(yaw) movement. In all parameters, the reliebility of COP analysis system was significantly high. Also, the construct validity compared between fifteen patients with stroke and normal persons was excellent in virtual moving surround condition(p

  • PDF

Characteristic Analysis of Flexibility and Muscle Strength according to Exercise using Lumbar Strengthen Exercise Instrument (요추강화 운동기기의 훈련을 통한 유연성 및 근력 특성 분석)

  • Kang, S.R.;Kim, K.;Jeong, G.Y.;Moon, D.A.;Kwon, T.K.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.4 no.1
    • /
    • pp.53-61
    • /
    • 2010
  • In this paper, We investigated the characteristic analysis of flexibility and muscle strength for exercise to verify capacity in rehabilitation exercise of lumbar using lumbar strengthen exercise instrument. We have experiment in 20th years man and woman who are 20 subject with no medical history, we divided subjects into control group with no exercise and training group with lumbar strengthen exercise. We used Hi-Spine(Medicalscience.korea) also, provided exercise 40 minute a day, three days a week and progressed total four weeks. Moreover in our experiment, subjects exercised four postural position as lay down, sit, stand and stretch each ten minute. We measured trunk extension backward, trunk flexion forward, evaluation of based physical fitness and lumbar joint torque. The reults have shown that there more improved all for flexibility, based physical fitness and lumbar joint torque in training group than control group. We indicated that by rotating 3-D axis movement flatform of exercise instrument, muscle spindle in subject have been stimulated and these rotation direction and angle caused muscle tonus and contraction that makes muscle, flexibility and based physical fitness improve more. Our study can be used rehabilitation exercise program to aged people and patient with lumbar injury.

The Comparison of Kinematic Data of the Body Orientation in Sitting Position to Adapt Dynamically Changing Angle of the Base of Support in Stroke Patients and Healthy Adults (뇌졸중 환자와 정상 성인의 앉은 자세에서 지지면의 동적 각도 변화에 적응하는 신체 정위의 운동형상학적 비교)

  • Song, In-Su;Choi, Jong-Duk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3513-3520
    • /
    • 2012
  • This study aimed to investigate the difference of the body orientation ability in sitting position to adapt to dynamically changing angle of the base of support in stroke patients and Healthy adults. The angle between vertical and head and trunk in 12 stroke patients (6 male and 6 female) and 12 healthy adults (6 male and 6 female) were measured by video motion analysis system. The head and trunk angle between stroke patients and healthy adults in sitting position were significantly different when increase the angle of dominant side(p<.05). The head and trunk angle between stroke patients and healthy adults in sitting position were significantly different when increase the angle of non-dominant side(p<.05). The head and trunk angle between stroke patients and healthy adults in sitting position were significantly different when decrease the angle of non-dominant side(p<.05). The head angle between stroke patients and healthy adults in sitting position was significantly different(p<.05), but the trunk angle was not significantly different when decrease the angle of dominant side(p>.05), Stroke patients compared to healthy adults had more deficits in their body orientation ability in sitting position to adapt to dynamically changing angle of the base of support. This finding may help to understand postural control deficits more clearly in stroke patients in sitting position.

A Case Study on the Estimation of Forest Work Load Index in the Type of Forest Tending Operation (숲가꾸기사업 유형별 산림작업부하지수 추정을 위한 사례연구)

  • Sung-Min Park;Hyeong-keun Kweon;Sung-Min Choi
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.303-321
    • /
    • 2023
  • To develop the Forest Work Load Index (FWLI) for estimating the work intensity of forest workers, a study focused on forest tending was conducted. To estimate the FWLI, we used the Ovako Working Posture Analysis System (OWAS) and the Work Load Index (WLI). The OWAS is a prominent method used for analyzing musculoskeletal load in work tasks, and WLI is a prominent method used for analyzing the work intensity of workers. The PRI values analyzed for each forest tending project were 185.3 (Thinning), 150.6 (Pruning), 181.1 (Thinning for Forest Fire Prevention), and 197.0 (Thinning for Young Trees). The WLI values, calculated on the basis of the measured heart rates, were 59.5% (Thinning), 53.5% (Pruning), 56.2% (Thinning for Forest Fire Prevention), and 62.3% (Thinning for Young Trees). The FWLI was calculated using the analyzed PRI and WLI values. The FWLI values for the forest tending project were 110.2 (Thinning), 80.7 (Pruning), 102.1 (Thinning for Forest Fire Prevention), and 123.0 (Thinning for Young Trees). The FWLI developed in this study can be used to quantitatively compare the workloads of forest workers. In the future, the analyzed FWLI can be used as a basis for improving forest workers' postures and comparing workloads across different forest projects.

Effects of Wearing Toe Braces of Hallux Valgus on Gait during Virtual Environment Simulation (무지외반증 발가락 교정기 착용 여부가 가상 환경 시뮬레이션 시 보행에 미치는 영향)

  • Dong-Su Kim;Da-Eun Lee;Hyun-A Shin;Ji-Won Jeon;Young-Keun Woo
    • PNF and Movement
    • /
    • v.21 no.1
    • /
    • pp.27-35
    • /
    • 2023
  • Purpose: Hallux valgus (HV) is one of the most common chronic foot disorders, occurring when the first toe deviates laterally toward the other toe. HV impairs muscle strength and affects gait function (postural sway and gait speed). Thus, this study aims to investigate using the FDM system the effect of wearing braces on gait while wearing a virtual reality (VR) device. Methods: This study was conducted on 28 healthy adults with HV of 15 degrees or more. To compare differences in walking, depending on whether a toe brace can be worn, the subject walked without wearing anything, walked after wearing the VR device, and walked after wearing the VR device and the toe brace, and the FDM system was used for the gait ability measurement analysis. Results: As a result of a one-way repeated analysis of variance, the walking speed-related variables (cadence, velocity, etc.) in the HV group were higher during comfortable walking. In addition, walking while wearing a VR device and walking while wearing a VR device and a toe brace demonstrated more significant values in terms of six gait parameters (double stance phase, loading response, stage, stage, stage, and stage). The maximum pressure of the forefoot was significantly reduced when walking while wearing a VR device and a toe brace compared to comfortable walking, but in all variables, there was no statistically significant difference between walking while wearing a VR device and walking while wearing a VR device and a toe brace. Conclusion: Orthosis with a VR device during gait (OVG) and gait with a VR device (GVR) affect gait in HV patients. However, there was no significant difference between GVR and OVG. Thus, it is necessary to conduct experiments on various HV angles and increase the duration of wearing the toe brace.

Effect on Discomfort and Attention Through Analysis of Resting-State Brain Wave Activity in Forward Head Posture (휴식시 뇌파 활성 분석을 통한 거북목 자세의 불편함 및 주의력에 미치는 영향 연구)

  • Ju-Yeon Jung;Chang-Ki Kang
    • Science of Emotion and Sensibility
    • /
    • v.27 no.2
    • /
    • pp.105-112
    • /
    • 2024
  • Forward head posture (FHP) is a representative postural deformation problem in people today, causing various physical and mental problems, but the effect of FHP on discomfort or distraction during rest is not well known. Accordingly, this study aims to demonstrate the effect of FHP on these brain functions by analyzing brain wave signals at rest. Thirty-three heavy users of computers participated in this study, and all of them exhibited functional FHP when using computers. All participants performed using both normal posture and FHP, and their brain waves were measured at rest while maintaining each posture for five minutes without stimulation. Brain wave signals were acquired using EEG with 32 channels, and through frequency analysis, changes in delta and beta waves, known to be closely related to discomfort and attention, were compared and analyzed depending on the posture. As a result, FHP showed a significant decrease in delta waves in nine channels compared to the normal posture, and a significant increase in beta waves in 14 channels, showing that FHP does affect brain function at rest. These changes are consistent with those that occur under conditions of psychological discomfort and distraction, and they appear to be because the increased discomfort caused by musculoskeletal changes in the FHP also affects brain activity. These can provide important results showing that posture correction can help improve brain function and psychological state at rest.