DOI QR코드

DOI QR Code

Reproducibility of Trunk Control Assessment and the Clinical Utility of the Distinguishing Barthel Index in Chronic Stroke Patients

만성 뇌졸중 환자들의 체간 조절 평가의 재현성과 Barthel Index구분을 위한 임상 유용성

  • Seung-Heon An (Department of Gait Rab of National Rehabilitation Center) ;
  • Dae-Sung Park (Department of Physical Therapy, Konyang University)
  • Received : 2024.03.28
  • Accepted : 2024.05.23
  • Published : 2024.08.31

Abstract

PURPOSE: This study examined the test-retest reliability and clinical utility of the Modified Trunk Impairment Scale (mTIS), Trunk Control Test (TCT), and Postural Assessment Scale for Stroke - Trunk Control (PASS-TC) in patients with chronic stroke. METHODS: Thirty-eight stroke patients were reassessed using the mTIS, TCT, and PASS-TC with a seven-day interval between assessments. The test-retest reliability was evaluated using the intraclass correlation coefficient (ICC2,1), the standard error of measurement (SEM), the minimal detectable change (MDC), and MDC%, as well as Bland-Altman analysis. The relationship between the mTIS, TCT, PASS-TC scores, and the Barthel Index (BI) was also investigated. RESULTS: The test-retest reliability for the mTIS, TCT, and PASS-TC was high, with ICC values ranging from .91 to .94 (95% confidence interval: .83-.97). The MDCs for the mTIS and TCT were 2.35 and 13.9, respectively, while the MDC for the P ASS-TC was 2.54, all below 20% of the maximum possible score, indicating reliable measurement. The optimal mTIS cut-off score for distinguishing between mild (75-95 points) and severe (50-74 points) dependence on the BI was ≥ 9.5, with an accuracy of 79%. Patients with an mTIS score ≥ 9.5 (out of 15) showed an 18-fold higher likelihood of achieving a mild level of functional independence than those with a score < 9.5. CONCLUSION: The mTIS, TCT, and PASS-TC showed high test-retest reliability and no systematic errors in chronic stroke patients. The MDC values were reliable, indicating meaningful change. Among these, the mTIS is a sensitive and a useful tool for predicting functional independence in clinical practice and is straightforward to apply.

Keywords

References

  1. Kibler WB, Press J, Sciascia A, et al. The role of core stability in athletic function. Sports Med. 2006;36(3):189-98. https://doi.org/10.2165/00007256-200636030-00001
  2. Ryerson S, Byl NN, Brown DA, et al. Altered trunk position sense and its relation to balance functions in people poststroke. J Neurol Phys Ther. 2008;32(10):14-20. https://doi.org/10.1097/NPT.0b013e3181660f0c
  3. Verheyden G, Nieuwboer A, Van de Winckel A, et al. Clinical tools to measure trunk performance after stroke: a systematic review of the literature. Clin Rehabil. 2007;21(5):387-94 https://doi.org/10.1177/0269215507074055
  4. Hsieh CL, Sheu CF, Hsueh I, et al. Trunk control as an early predictor of comprehensive activities of daily living function in stroke patients. Stroke, 2002;33(11):2626-30. https://doi.org/10.1161/01.STR.0000033930.05931.93
  5. Verheyden G, Vereeck L, Truijen S, et al. Trunk performance after stroke and the relationship with balance, gait and functional ability. Clin Rehabil. 2006;20(5):451-8. https://doi.org/10.1191/0269215505cr955oa
  6. De Vet HC, Terwee CB, Knol DL, et al. When to use agreement versus reliability measures. J Clin Epidemiol. 2006;59(10):1033-9. https://doi.org/10.1016/j.jclinepi.2005.10.015
  7. De Vet HC, Terwee CB, Ostelo RW, et al. Minimal changes in health status questionnaires: distinction between minimally detectable change and minimally important change. Health Qual Life Outcomes 2006;4:54.
  8. Gjelsvik B, Breivik K, Verheyden G, et al. The Trunk Impairment Scale - modified to ordinal scales in the Norwegian version. Disabil Rehabil. 2012;34(16):1385-95. https://doi.org/10.3109/09638288.2011.645113
  9. Collin C, Wade D. Assessing motor impairment after stroke: a pilot reliability study. J Neurol Neurosurg Psychiatry. 1990;53(7):576-9. https://doi.org/10.1136/jnnp.53.7.576
  10. Franchignoni FP, Tesio L, Ricupero C, et al. Trunk control test as an early predictor of stroke rehabilitation outcome. Stroke. 1997;28(7):1382-5. https://doi.org/10.1161/01.STR.28.7.1382
  11. Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998;26(4):217-38. https://doi.org/10.2165/00007256-199826040-00002
  12. Kovacs FM, Abraira V, Royuela A, et al. Minimum detectable and minimal clinically important changes for pain in patients with nonspecific neck pain. BMC Musculoskelet Disord. 2008;9:43.
  13. Lexell JE, Downham DY. How to assess the reliability of measurements in rehabilitation. Am J Phys Med Rehabil 2005;84(9):719-23. https://doi.org/10.1097/01.phm.0000176452.17771.20
  14. Schuck P, Zwingmann C. The'smallest real difference' as a measure of sensitivity to change: a critical analysis. Int J Rehabil Res. 2003;26(2):85-91.
  15. Beckerman H, Roebroeck ME, Lankhorst GJ, et al. Smallest real difference, a link between reproducibility and responsiveness. Qual Life Res. 2001;10(7):571-8. https://doi.org/10.1023/A:1013138911638
  16. Flansbjer UB, Blom J, Brogardh C. The reproducibility of berg balance scale and the single-leg stance in chronic stroke and the relationship between the two tests. PMR. 2012;4(3):165-170. https://doi.org/10.1016/j.pmrj.2011.11.004
  17. Benaim C, Peennou DA, Villy J, et al. Validation of a standardized assessment of postural control in stroke patients: the postural assessment scale for stroke patients(pass). Stroke. 1999;30(9):1862-8. https://doi.org/10.1161/01.STR.30.9.1862
  18. Prince B, Makrides L, Richman J. Research methodology and applied statistics. Part 2: The literature search. Physiother Can. 1980;32(4):201-6.
  19. Beckerman H, Roebroeck ME, Lankhorst GJ, et al. Smallest real difference, a link between reproducibility and responsiveness. Qual Life Res. 2001;10(7):571-8. https://doi.org/10.1023/A:1013138911638
  20. Smidt N, van der Windt DA, Assendelft WJ, et al. Interobserver reproducibility of the assessment of severity of complaints, grip strength, and pressure pain threshold in patients with lateral epicondylitis. Arch Phys Med Rehabil. 2002;83(8)1145-50. https://doi.org/10.1053/apmr.2002.33728
  21. Bland JM, Altman DG. A note on the use of the intraclass correlation coefficient in the evaluation of agreement between two methods of measurement. Comput Biol Med. 1990;20(5):337-340. https://doi.org/10.1016/0010-4825(90)90013-F
  22. Wang CH, Hsueh IP , Sheu CF, et al. Discriminative, predictive, and evaluative properties of a trunk control measure in patients with stroke. Phys Ther. 2005;85(9):887-94. https://doi.org/10.1093/ptj/85.9.887
  23. Bohannon RW. Lateral trunk flexion strength: Impairment, measurement reliability and implications following unilateral brain lesion. Int J Rehabil Res. 1992;15(3):249-51. https://doi.org/10.1097/00004356-199209000-00010
  24. Bohannon RW. Recovery and correlates of trunk muscle strength after stroke. Int J Rehabil Res. 1995;18(2):162-7. https://doi.org/10.1097/00004356-199506000-00010
  25. Verheyden G, Kersten P. Investigating the internal validity of the Trunk Impairment Scale (TIS) using Rasch analysis: the TIS 2.0. Disabil Rehabil. 2010;32(25):2127-37. https://doi.org/10.3109/09638288.2010.483038
  26. Verheyden G, Nieuwboer A, Feys H, et al. Discriminant ability of the Trunk Impairment Scale: a comparison between stroke patients and healthy adults. Disabil Rehabil. 2005;27(17):1023-8. https://doi.org/10.1080/09638280500052872
  27. Greiner M, Pfeiffer D, Smith RD. Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Prev Vet Med. 2000;45(1-2):23-41. https://doi.org/10.1016/S0167-5877(00)00115-X
  28. Lee YB, An SH, Lee GC. Clinical utility of the modified trunk impairment scale for stroke survivors. Disabil Rehabil. 2018;40(10):1200-5. https://doi.org/10.1080/09638288.2017.1282990
  29. Mahoney FI, Barthel DW. Functional evaluation: the Barthel Index. Md State Med J. 1965;14:61-5.