• Title/Summary/Keyword: Post-Production

Search Result 1,315, Processing Time 0.026 seconds

Youtube Influencer's Startup Strategy Using Lean Startup Technique (린스타트업 기법을 활용한 유튜브 인플루언서의 창업전략)

  • Park, Jeong Sun;Park, Sang Hyeok;Kim, Young Lag
    • The Journal of Information Systems
    • /
    • v.31 no.1
    • /
    • pp.147-173
    • /
    • 2022
  • Purpose As the use of social network services has become common, it has become possible to freely communicate and establish relationships with other people anytime, anywhere for communication and information sharing. Influencers who have a strong influence on consumers' perceptions and attitudes through their own opinions and stories have appeared on various social media channels such as YouTube. Recently, companies utilize influencers with a large number of followers to check interactions with customers to understand customer attitudes and opinions about products in real time. Start-ups with insufficient resources need to quickly examine customer responses to reduce the probability of failure after product planning. The Lean process of creating an MVP and quickly confirming and learning the market response should be repeated over and over again. Findings In this paper, we try to suggest that the YouTube platform can play a sufficient role as a customer experiment space through examples. The case company is a company that has successfully commercialized products by continuously interacting with customers through the YouTube platform for the first four months of its founding. This paper is expected to be helpful in the experimental process for prospective founders and early founders to examine customer responses to reduce the probability of market failure before commercialization. Design/methodology/approach This paper analyzed the YouTube channel data of case companies based on the netnography methodology and presented the contents of the lean process management carried out in the experimental stage and the post-production stage through interview research.

Analysis of gene expression profiles to study malaria vaccine dose efficacy and immune response modulation

  • Dey, Supantha;Kaur, Harpreet;Mazumder, Mohit;Brodsky, Elia
    • Genomics & Informatics
    • /
    • v.20 no.3
    • /
    • pp.32.1-32.15
    • /
    • 2022
  • Malaria is a life-threatening disease, and Africa is still one of the most affected endemic regions despite years of policy to limit infection and transmission rates. Further, studies into the variable efficacy of the vaccine are needed to provide a better understanding of protective immunity. Thus, the current study is designed to delineate the effect of each dose of vaccine on the transcriptional profiles of subjects to determine its efficacy and understand the molecular mechanisms underlying the protection this vaccine provides. Here, we used gene expression profiles of pre and post-vaccination patients after various doses of RTS,S based on samples collected from the Gene Expression Omnibus datasets. Subsequently, differential gene expression analysis using edgeR revealed the significantly (false discovery rate < 0.005) 158 downregulated and 61 upregulated genes between control vs. controlled human malaria infection samples. Further, enrichment analysis of significant genes delineated the involvement of CCL8, CXCL10, CXCL11, XCR1, CSF3, IFNB1, IFNE, IL12B, IL22, IL6, IL27, etc., genes which found to be upregulated after earlier doses but downregulated after the 3rd dose in cytokine-chemokine pathways. Notably, we identified 13 cytokine genes whose expression significantly varied during three doses. Eventually, these findings give insight into the dual role of cytokine responses in malaria pathogenesis. The variations in their expression patterns after various doses of vaccination are linked to the protection as it decreases the severe inflammatory effects in malaria patients. This study will be helpful in designing a better vaccine against malaria and understanding the functions of cytokine response as well.

Status of Government Funded Projects for "Laboratory Safety" ('연구실 안전' 관련 정부연구개발사업 동향 분석)

  • Suh, Jiyoung;Kim, Hyemin;Bae, Sunyoung;Park, Jeongim
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.31 no.4
    • /
    • pp.396-416
    • /
    • 2021
  • Objectives: This study was conducted to analyze the trends of government R&D (R&D) projects related to laboratory safety over the past 20 years. Methods: We collected publications from various databases(DBs) with words such as laboratory(ies), lab(s), researcher(s), laboratory worker(s), safety, environment, hazard(s), risk(s), and so on. Selected publications were analyzed by the research funds and the number of projects according to the investment subject and research characteristics. Results: About 93% of the total R&D budget went to government policy projects, not scientific research. Second, from the perspective of 'safety management activities', most of the research is related to management and inspection at the organizational level. Issues that need to be discussed at the national level like policy governance are not included. Third, focusing on the 'safety management cycle', there were few studies related to 'prediction' or 'post-response'. Fourth, when an analysis framework combining the perspectives of 'safety management activities' and 'safety management cycle' is applied, most of the budget is spent on infrastructure such as digital management systems, whereas basic knowledge for prevention and production of evidence was very few. Conclusions: In order to prevent policy planning without policy evaluation, implementation without strategy, and evaluation without evidence, it is necessary to expand investment in empirical research on risks, research on the effectiveness of current application methods, and research on theory development. The government budget for laboratory safety-related projects should be managed separately from the R&D budget for scientific research. Although less than 5% of the budget allocated to scientific research is the total budget, an optical illusion occurs because both the project budget and the scientific research budget are counted as R&D budgets.

ISO14971:2019 Detailed Analysis and Periodic Safety Update Report Establishment Method for the Single Use Medical Device - Focusing on Medical Device Regulation 2017/745 requirements (일회용 의료기기에 적용을 위한 ISO 14971:2019 분석과 Periodic Safety Update Report 작성 방법 - Medical Device Regulation 2017/745 요구사항 중심으로)

  • Sang Min, Park;Gyu Ha, Ryu
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • With the announcement of MEDICAL DEVICE REGULATION 2017/745 (MDR) on April 5 2017, medical device manufacturers shall apply ISO 14971:2019 (3rd) revised in December 2019. However, there is not much related information and guidance available to medical device manufacturers, especially single use medical device. Risk management process basically follow 5 steps which are Risk Analysis, Risk Evaluation, Risk Control, Evaluation of overall residual risk and post-production activities. The purpose of this study is to provide a guidance of from risk analysis with Failure Mode and Effects Analysis (FMEA) table to overall residual risk evaluation for the single use medical device and to reflect it in a Periodic Safety Update Reports (PSUR) to satisfy with MDR requirements with single use medical device which are widely used and manufactured FDA class 2 or CE class IIb as examples. For this study, single use medical device manufacturer can adopt ISO 14971:2019 in accordance with MDR requirements and it can be extended to the PSUR. But there are still limitations to adopt to the all-single use medical device especially high class, private device and implantable device. So, Competent Authority (CA) shall publish more guidance for the single use medical device.

Effect of body condition score at calving on transition success in Nili Ravi buffaloes

  • Sayyad H., Magsi;Muhammad A., Rashid;Nisar, Ahamed;Maqsood, Akhter;Muhammad Q., Shahid
    • Journal of Animal Science and Technology
    • /
    • v.64 no.6
    • /
    • pp.1013-1023
    • /
    • 2022
  • Body condition score (BCS) at calving is a vital indicator of the effectiveness of the beginning of lactation in dairy animals. The purpose of this study was to examine the effect of BCS at calving on milk production and transition success in dairy buffaloes. Thirty-six (36) Nili Ravi buffaloes were enrolled at 40 days of expected calving and followed through 90 days of lactation. The buffaloes were categorized into three groups according to their BCS (on a scale of 1-5 with 0.25 increments) as follows: 1) low, buffaloes with BCS ≤ 3.0; 2) medium, buffaloes with BCS 3.25-3.5; and 3) high, buffaloes with BCS ≥ 3.75. All buffaloes were fed a similar diet ad libitum. The lactation diet had increased concentrate allowance according to milk yield. The results revealed that the BCS at calving did not affect milk yield; however, fat percentage (fat%) was lower in the low-BCS group. Dry matter intake (DMI) was similar among the treatment groups, although post-calving BCS loss was greater in the high-BCS group compared to the medium- and the low-BCS groups. Similarly, the buffaloes in the high-BCS group had higher non-esterified fatty acids (NEFA) concentration compared to the low- and medium-BCS groups. No cases of metabolic disorders were observed during the study. The present results suggest that the buffaloes in the medium-BCS group appeared to perform better compared to the low- and the high-BCS groups with respect to milk fat% and blood NEFA concentration.

RNA-seq Gene Profiling Reveals Transcriptional Changes in the Late Phase during Compatible Interaction between a Korean Soybean Cultivar (Glycine max cv. Kwangan) and Pseudomonas syringae pv. syringae B728a

  • Myoungsub, Kim;Dohui, Lee;Hyun Suk, Cho;Young-Soo, Chung;Hee Jin, Park;Ho Won, Jung
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.603-615
    • /
    • 2022
  • Soybean (Glycine max (L) Merr.) provides plant-derived proteins, soy vegetable oils, and various beneficial metabolites to humans and livestock. The importance of soybean is highly underlined, especially when carbon-negative sustainable agriculture is noticeable. However, many diseases by pests and pathogens threaten sustainable soybean production. Therefore, understanding molecular interaction between diverse cultivated varieties and pathogens is essential to developing disease-resistant soybean plants. Here, we established a pathosystem of the Korean domestic cultivar Kwangan against Pseudomonas syringae pv. syringae B728a. This bacterial strain caused apparent disease symptoms and grew well in trifoliate leaves of soybean plants. To examine the disease susceptibility of the cultivar, we analyzed transcriptional changes in soybean leaves on day 5 after P. syringae pv. syringae B728a infection. About 8,900 and 7,780 differentially expressed genes (DEGs) were identified in this study, and significant proportions of DEGs were engaged in various primary and secondary metabolisms. On the other hand, soybean orthologs to well-known plant immune-related genes, especially in plant hormone signal transduction, mitogen-activated protein kinase signaling, and plant-pathogen interaction, were mainly reduced in transcript levels at 5 days post inoculation. These findings present the feature of the compatible interaction between cultivar Kwangan and P. syringae pv. syringae B728a, as a hemibiotroph, at the late infection phase. Collectively, we propose that P. syringae pv. syringae B728a successfully inhibits plant immune response in susceptible plants and deregulates host metabolic processes for their colonization and proliferation, whereas host plants employ diverse metabolites to protect themselves against infection with the hemibiotrophic pathogen at the late infection phase.

Analysis of Material Properties According to Compounding Conditions of Polymer Composites to Reduce Thermal Deformation (열변형 저감을 위한 고분자 복합소재 배합 조건에 따른 재료특성 분석)

  • Byun, Sangwon;Kim, Youngshin;Jeon, Euy sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.148-154
    • /
    • 2022
  • As the 4th industrial age approaches, the demand for semiconductors is increasing enough to be used in all electronic devices. At the same time, semiconductor technology is also developing day by day, leading to ultraprecision and low power consumption. Semiconductors that keep getting smaller generate heat because the energy density increases, and the generated heat changes the shape of the semiconductor package, so it is important to manage. The temperature change is not only self-heating of the semiconductor package, but also heat generated by external damage. If the package is deformed, it is necessary to manage it because functional problems and performance degradation such as damage occur. The package burn in test in the post-process of semiconductor production is a process that tests the durability and function of the package in a high-temperature environment, and heat dissipation performance can be evaluated. In this paper, we intend to review a new material formulation that can improve the performance of the adapter, which is one of the parts of the test socket used in the burn-in test. It was confirmed what characteristics the basic base showed when polyamide, a high-molecular material, and alumina, which had high thermal conductivity, were mixed for each magnification. In this study, functional evaluation was also carried out by injecting an adapter, a part of the test socket, at the same time as the specimen was manufactured. Verification of stiffness such as tensile strength and flexural strength by mixing ratio, performance evaluation such as thermal conductivity, and manufacturing of a dummy device also confirmed warpage. As a result, it was confirmed that the thermal stability was excellent. Through this study, it is thought that it can be used as basic data for the development of materials for burn-in sockets in the future.

On-Farm and Processing Factors Affecting Rabbit Carcass and Meat Quality Attributes

  • Sethukali Anand Kumar;Hye-Jin Kim;Dinesh Darshaka Jayasena;Cheorun Jo
    • Food Science of Animal Resources
    • /
    • v.43 no.2
    • /
    • pp.197-219
    • /
    • 2023
  • Rabbit meat has high nutritional and dietetic characteristics, but its consumption rate is comparatively lower than other meat types. The nutritional profile of rabbit meat, by comparison with beef, pork, and poultry, is attributed to relatively higher proportions of n-3 fatty acids and low amounts of intramuscular fat, cholesterol, and sodium, indicating its consumption may provide health benefits to consumers. But, the quality attributes of rabbit meat can be originated from different factors such as genetics, environment, diet, rearing system, pre-, peri-, and post-slaughter conditions, and others. Different rabbit breeds and the anatomical location of muscles may also affect the nutritional profile and physicochemical properties of rabbit meat. However, adequate information about the effect of those two factors on rabbit meat is limited. Therefore, cumulative information on nutritional composition and carcass and meat quality attributes of rabbit meat in terms of different breeds and muscle types and associated factors is more important for the production and processing of rabbits. Moreover, some studies reported that rabbit meat proteins exhibited angiotensin-converting enzyme inhibitory characteristics and antioxidant properties. The aim of this review is to elucidate the determinants of rabbit meat quality of different breeds and its influencing factors. In addition, the proven biological activities of rabbit meat are introduced to ensure consumer satisfaction.

Protective effects of Panax ginseng berry extract on blue light-induced retinal damage in ARPE-19 cells and mouse retina

  • Hye Mi Cho;Sang Jun Lee;Se-Young Choung
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.65-73
    • /
    • 2023
  • Background: Age-related macular degeneration (AMD) is a significant visual disease that induces impaired vision and irreversible blindness in the elderly. However, the effects of ginseng berry extract (GBE) on the retina have not been studied. Therefore, this study aimed to investigate the protective effects of GBE on blue light (BL)-induced retinal damage and elucidate its underlying mechanisms in human retinal pigment epithelial cells (ARPE-19 cells) and Balb/c retina. Methods: To investigate the effects and underlying mechanisms of GBE on retinal damage in vitro, we performed cell viability assay, pre-and post-treatment of sample, reactive oxygen species (ROS) assay, quantitative real-time PCR (qRT-PCR), and western immunoblotting using A2E-laden ARPE-19 cells with BL exposure. In addition, Balb/c mice were irradiated with BL to induce retinal degeneration and orally administrated with GBE (50, 100, 200 mg/kg). Using the harvested retina, we performed histological analysis (thickness of retinal layers), qRT-PCR, and western immunoblotting to elucidate the effects and mechanisms of GBE against retinal damage in vivo. Results: GBE significantly inhibited BL-induced cell damage in ARPE-19 cells by activating the SIRT1/PGC-1α pathway, regulating NF-kB translocation, caspase 3 activation, PARP cleavage, expressions of apoptosis-related factors (BAX/BCL-2, LC3-II, and p62), and ROS production. Furthermore, GBE prevented BL-induced retinal degeneration by restoring the thickness of retinal layers and suppressed inflammation and apoptosis via regulation of NF-kB and SIRT1/PGC-1α pathway, cleavage of caspase 3 and PARP, and expressions of apoptosis-related factors in vivo. Conclusions: GBE could be a potential agent to prevent dry AMD and progression to wet AMD.

Golgi Stress Response: New Insights into the Pathogenesis and Therapeutic Targets of Human Diseases

  • Won Kyu Kim;Wooseon Choi;Barsha Deshar;Shinwon Kang;Jiyoon Kim
    • Molecules and Cells
    • /
    • v.46 no.4
    • /
    • pp.191-199
    • /
    • 2023
  • The Golgi apparatus modifies and transports secretory and membrane proteins. In some instances, the production of secretory and membrane proteins exceeds the capacity of the Golgi apparatus, including vesicle trafficking and the post-translational modification of macromolecules. These proteins are not modified or delivered appropriately due to the insufficiency in the Golgi function. These conditions disturb Golgi homeostasis and induce a cellular condition known as Golgi stress, causing cells to activate the 'Golgi stress response,' which is a homeostatic process to increase the capacity of the Golgi based on cellular requirements. Since the Golgi functions are diverse, several response pathways involving TFE3, HSP47, CREB3, proteoglycan, mucin, MAPK/ETS, and PERK regulate the capacity of each Golgi function separately. Understanding the Golgi stress response is crucial for revealing the mechanisms underlying Golgi dynamics and its effect on human health because many signaling molecules are related to diseases, ranging from viral infections to fatal neurodegenerative diseases. Therefore, it is valuable to summarize and investigate the mechanisms underlying Golgi stress response in disease pathogenesis, as they may contribute to developing novel therapeutic strategies. In this review, we investigate the perturbations and stress signaling of the Golgi, as well as the therapeutic potentials of new strategies for treating Golgi stress-associated diseases.