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The Golgi apparatus modifies and transports secretory and 
membrane proteins. In some instances, the production of 
secretory and membrane proteins exceeds the capacity of the 
Golgi apparatus, including vesicle trafficking and the post-
translational modification of macromolecules. These proteins 
are not modified or delivered appropriately due to the 
insufficiency in the Golgi function. These conditions disturb 
Golgi homeostasis and induce a cellular condition known 
as Golgi stress, causing cells to activate the ‘Golgi stress 
response,’ which is a homeostatic process to increase the 
capacity of the Golgi based on cellular requirements. Since 
the Golgi functions are diverse, several response pathways 
involving TFE3, HSP47, CREB3, proteoglycan, mucin, MAPK/
ETS, and PERK regulate the capacity of each Golgi function 
separately. Understanding the Golgi stress response is crucial 
for revealing the mechanisms underlying Golgi dynamics and 
its effect on human health because many signaling molecules 
are related to diseases, ranging from viral infections to 
fatal neurodegenerative diseases. Therefore, it is valuable 
to summarize and investigate the mechanisms underlying 
Golgi stress response in disease pathogenesis, as they may 
contribute to developing novel therapeutic strategies. In this 
review, we investigate the perturbations and stress signaling 

of the Golgi, as well as the therapeutic potentials of new 
strategies for treating Golgi stress-associated diseases.

Keywords: Golgi stress, Golgi stress response, human disease, 

pathogenesis, therapeutic target

INTRODUCTION

The Golgi apparatus is involved in the intracellular transport 

and maturation of proteins and lipids (Rohn et al., 2000; Vi-

otti, 2016). More than a third of all human genes are known 

to encode proteins that travel through the Golgi (Yuen et al., 

1997). The Golgi has a distinctive structure with several layers 

of flat, semicircular vesicles known as cisternae. Most re-

search has concentrated on the molecular and physiological 

mechanisms behind the Golgi apparatus’s structural charac-

teristics and material transport (Duden, 2003; Klumperman, 

2000; Lee et al., 2004; Tamaki and Yamashina, 2002; Watson 

and Stephens, 2005). Recent studies indicate that the Golgi 

functions as a signaling hub in intracellular signal transduc-

tion pathways involved in the development and progression 

of many diseases (Cancino and Luini, 2013; Makhoul et al., 



192  Mol. Cells 2023; 46(4): 191-199  

New Insights into the Golgi Stress Response
Won Kyu Kim et al.

2019; Spano and Colanzi, 2022). The pathophysiological in-

volvement of the Golgi is attracting interest because protein 

quality control, which is known to have a significant associa-

tion with the pathogenesis of numerous diseases, is associat-

ed with the Golgi (Schwabl and Teis, 2022).

 Pathophysiological cellular stress stimuli affect Golgi ho-

meostasis directly (Li et al., 2019; Liu et al., 2021), resulting in 

Golgi stress. In response to Golgi stress, cells activate adaptive 

mechanisms to overcome the stress and restore Golgi ho-

meostasis. Although Golgi stress is not as well established as 

endoplasmic reticulum (ER) stress, increasing evidence indi-

cates that distinct signaling cascades are involved in the Golgi 

stress response. This review highlights the potential triggers 

of Golgi stress, related signaling mechanisms, and therapeu-

tic strategies that target Golgi stress signaling.

FACTORS DISRUPTING FUNCTIONAL AND 
MORPHOLOGICAL INTEGRITY/HOMEOSTASIS OF 
THE GOLGI APPARATUS

The Golgi apparatus is a highly reactive organelle that exhib-

its functional and morphological perturbations in response to 

molecular-level and contextual factors.

Molecular-level factors
Several small compounds that trigger Golgi stress via various 

mechanisms have been discovered. Stressors include monen-

sin (Boss et al., 1984; Ellinger and Pavelka, 1984) and nigeri-

cin (Suga et al., 2015), which are ionophores that neutralize 

luminal pH and block intra-Golgi trafficking, and lithocholyl-

glycine, which inhibits α-2,3-sialyltransferase activity (Chang 

et al., 2006). Targeting the ADP ribosylation factor (ARF) 

proteins with compounds, such as Brefeldin A (Robineau et 

al., 2000) and Golgicide A (Saenz et al., 2009), induces Golgi 

stress by increasing redistribution of the Golgi in the ER. Exo2 

prevents the anterograde movement of the viral glycoprotein 

VSVG (vesicular stomatitis virus G) from the ER to the Golgi, 

resulting in a selective disruption of the Golgi without affect-

ing the trans-Golgi network (TGN) (Feng et al., 2004). Also, 

DNA damage induced by chemotherapeutic agents, such 

as camptothecin and doxorubicin, triggers Golgi fragmen-

tation and inhibits vesicular transport via DNA-PK-mediated 

GOLPH3 phosphorylation (Farber-Katz et al., 2014).

Contextual factors
Numerous cancer cell lines, including breast (Sewell et al., 

2006), colon (Kellokumpu et al., 2002), and prostate cancer 

cells (Nolfi et al., 2020), exhibit fragmented Golgi. The struc-

tural and functional changes in the Golgi contribute to the 

survival, proliferation, and metastasis of cancer cells (Bui et 

al., 2021; Petrosyan, 2015). The uncontrolled proliferation of 

cancer cells requires massive protein synthesis, which impacts 

the Golgi’s regulation of the cancer cell secretome (Bajaj et 

al., 2022). Cancer-induced perturbations of the Golgi can 

evoke intrinsic signals to alter Golgi architecture and traffick-

ing kinetics (Howley and Howe, 2018).

 In addition, cancer cells and microenvironments conducive 

to tumor growth are essential components of both primary 

and secondary tumors (Baghban et al., 2020). Golgi pertur-

bation is induced by microenvironmental stressors, including 

acidification, hypoxia, and nutritional deprivation (Bui et al., 

2021). Interrupting glycosylation, nutrient deficiency, and 

especially glucose deficiency contribute to Golgi stress. The 

functional alterations of Golgi have also been associated with 

neurodegenerative diseases such as Huntington’s disease 

(Sbodio et al., 2018), amyotrophic lateral sclerosis (Park et 

al., 2020) and Alzheimer’s disease (Suga et al., 2022), and 

metabolic diseases such as diabetes (Bone et al., 2020) and 

lipotoxicity (Bascil Tutuncu et al., 2022).

CELLULAR RESPONSE TO GOLGI STRESS

In response to Golgi stress, cells activate an adaptive signaling 

pathway known as the Golgi stress response, which assists 

cells in coping with the stress by enhancing the capacity of 

the Golgi for maturation and secretion of proteins and clear-

ing the accumulation of proteins within the Golgi.

 Recent research has shed light on a critical component 

of the regulatory mechanism underlying the Golgi stress 

response. This component includes transcription factor 

binding to IGHM enhancer 3 (TFE3), CAMP Responsive Ele-

ment Binding Protein 3 (CREB3), mitogen-activated protein 

kinases/erythroblast transformation specific (MAPK/ETS), the 

protein kinase R (PKR)-like ER kinase (PERK), proteoglycan, 

mucin, and heat shock protein 47 (HSP47) pathways (Fig. 1). 

TFE3 is a transcription factor that acts as a master regulator 

of lysosomal biogenesis and immune response (Beckmann et 

al., 1990; Lawrence et al., 2019; Mathieu et al., 2019; Willett 

et al., 2017). It has been reported that Golgi stress-mediated 

dephosphorylated TFE3 binds a Golgi apparatus stress re-

sponse element (GASE) to activate the transcription of Gol-

gi-associated genes, including glycosylation enzymes (fucos-

yltransferase 1, sialyltransferase 4A, sialyltransferase 10, and 

UDP-N-acetylhexosamine pyrophosphorylase-like 1), Golgi 

structural proteins (GM130, Giantin, and GCP60), and ve-

sicular transport components (RAB20, STX 3A, and WIPI49) 

(Oku et al., 2011; Taniguchi et al., 2015). Treating cells with 

Brefeldin A activates the CREB3-ARF4 pathway and inhibits 

the function of ARF proteins. Consequently, the cytoplasmic 

domains of CREB3 are released from the ER membrane and 

translocated into the nucleus to upregulate the Golgi-associ-

ated genes, including ARF4, resulting in Golgi stress-induced 

apoptosis (Howley et al., 2018; Reiling et al., 2013).

 MAPK and PERK pathways involve the enzyme-mediat-

ed cascade in response to Golgi stress. The MAPK cascade 

and ETS family transcription factor induce apoptosis under 

Golgi stress (Baumann et al., 2018). PERK, a protein kinase 

that belongs to the eIF2α kinase subfamily, activated upon 

ER stress, has been identified as a pathway activated by the 

Golgi stressor monensin (Sbodio et al., 2018). Interestingly, 

PERK-mediated Golgi stress response acts via the eIF2α/ATF4/

AARE (amino acid response elements) but is independent 

of the ER-resident chaperone BiP/GRP78, suggesting that 

this pathway is a distinct type of stress response. In addition, 

although transcription factors have not been identified, cer-

tain signaling pathways are known to contribute to the Golgi 

stress response. For example, the proteoglycan pathway is 

activated in case of insufficient proteoglycan glycosylation in 
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the Golgi. It upregulates the transcription of genes encoding 

glycosyltransferase and sulfotransferase through an enhancer 

known as proteoglycan-type Golgi stress response element 

(PGSE) (Sasaki et al., 2019). Mucins are highly glycosylated, 

viscous proteins, and inadequate glycosylation of mucins 

induces a mucin-type Golgi stress response accompanied by 

TFE3 activation via mucin-type Golgi stress response element 

(MGSE) (Jamaludin et al., 2019). HSP47 is an ER chaperone, 

and its upregulation in response to Golgi stress protects cells 

against apoptosis (Miyata et al., 2013).

 Notably, it has been recently reported that the Golgi stress 

response participates in protein homeostasis through three 

Golgi-associated degradation signaling pathways: Golgi 

apparatus-related degradation (GARD), endosome and Gol-

gi-related stress-responsive associated degradation (EGAD), 

and Golgi membrane-associated degradation (GOMED).

 Golgi stress changes Golgi morphology via protea-

some-mediated degradation of the Golgi tethering factor 

GM130 bound to the cytosolic side of the Golgi membrane 

(Eisenberg-Lerner et al., 2020). This process, known as 

GARD, enables the Golgi to rapidly adjust its structure via 

localized proteasomal degradation in response to stress. In 

addition, GARD may be associated with the pathogenesis of 

virus infection. For example, herpes simplex virus has been re-

ported to downregulate GM130 and induce Golgi fragmen-

tation (He et al., 2020). It remains to be determined whether 

GARD-dependent regulation of Golgi stress is a feature of 

viral infection accompanied by Golgi fragmentation.

 In EGAD, Golgi membrane proteins are degraded by Gol-

gi and cytosolic proteasomes without returning to the ER 

(Schmidt et al., 2019). An example of EGAD is Orm2, the 

Golgi membrane protein in budding yeast. Orm2 is a con-

served subunit of the serine:palmitoyl-coenzyme. It is a trans-

ferase complex that negatively regulates the production of 

sphingolipids (Hannun and Obeid, 2018). Orm2 is polyubiq-

uitinated by the Golgi-localized Dsc E3 ligase complex, sep-

arated from the membrane by the ATPase VCP/CDC48, and 

subsequently degraded by cytosolic proteasomes, in contrast 

to most Golgi-polyubiquitinated proteins, which are sorted 

by the endosomal sorting complex required for transport 

(ESCRT) components for vacuolar/lysosomal degradation 

(Schmidt et al., 2019). It is possible that EGAD-dependent 

proteasomal degradation of Orm2 functions as the post-ER 

checkpoint to regulate lipid metabolism in budding yeast.

 While GARD and EGAD contribute to proteostasis by 

using the proteasome system, GOMED is a distinct mecha-

nism that degrades Golgi trafficking proteins via trans-Golgi 

membranes (Noguchi and Shimizu, 2022). When Golgi traf-

Fig. 1. Golgi stress response pathway. Golgi stress-induced dephosphorylation of TFE3 promotes the transcription of target genes 

via GASE. Insufficient glycosylation of mucin and proteoglycans activate Golgi stress response through MGSE-mediated activation of 

TFE3 and PGSE, respectively. Golgi stress-induced HSP47 mediates anti-apoptosis. CREB is cleaved by Golgi proteases (S1P and S2P) in 

response to Golgi stress and increases ARF4 expression. As kinase-mediated Golgi stress responses, MAPK and PERK pathway induces 

the phosphorylation of ETS and eIF2α, respectively. Phosphorylation of eIF2α increases the expression of ATF4, which activates target 

genes via AARE. See the text for details. TFE3, transcription factor binding to IGHM enhancer 3; HSP47, heat shock protein 47; CREB3, 

CAMP Responsive Element Binding Protein 3; ER, endoplasmic reticulum; MAPK/ETS, mitogen-activated protein kinases/erythroblast 

transformation specific; PERK, protein kinase RNA-like endoplasmic reticulum kinase; GASE, Golgi apparatus stress response element; 

MGSE, mucin-type Golgi stress response element; PGSE, proteoglycan-type Golgi stress response element; ATF4, Activating transcription 

factor 4; AARE, amino acid response elements.
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ficking is disrupted, the trans-Golgi membrane invaginates 

and engulfs proteins that could not be secreted or delivered 

to the plasma membranes, causing them to be accumulated 

in the TGN as degrading cargos; this process is also known 

as ATG5/ATG7-independent alternative autophagy (Nishida 

et al., 2009). WIPI3, a polyphosphoinositide-binding protein, 

has been recently reported as a key regulator of GOMED that 

binds to the Golgi membrane to form autophagosome-like 

structures (Yamaguchi et al., 2020). WIPI3-mediated alter-

native autophagy is required to maintain neuronal cells via a 

mechanism different from ATG-dependent canonical autoph-

agy.

 In Golgi stress response research, an unsettled but essen-

tial question is: what are the properties of molecules that 

sense Golgi stress and initiate signaling? Sensors for each 

pathway of Golgi stress response have not been elucidated. 

However, several candidates have recently been suggested. 

For example, it has been reported that GOLPH3, a peripheral 

membrane protein localized to the Golgi, is not only a Golgi 

stress sensor but also an initiator that transmits Golgi stress 

signals to the downstream pathway (Li et al., 2016). ATG9A/

MARCH9/GRASP55 has been suggested as a direct sensor of 

heat-induced Golgi stress (Luo et al., 2022). Identifying com-

mon or individual sensors for these seven pathways would be 

essential for characterizing the Golgi stress response.

GOLGI STRESS IN DISEASES

Recent findings of Golgi stress signaling in human diseases
Recent research has uncovered new Golgi stress-mediated 

regulators and mechanisms involved in the infections and 

immune responses caused by pathogens such as viruses, bac-

teria, and parasites. For example, Influenza A virus infection 

leads to TGN dispersion, which depends on the NLR family 

pyrin domain containing 3 (NLRP3) inflammasome activation 

(Pandey and Zhou, 2022). TGN serves as a platform for the 

recruitment of NLRP3 and its downstream adaptor proteins, 

resulting in the formation of an active inflammasome. Inter-

estingly, it has been reported that the Golgi stressor nigericin 

induces NLRP3 aggregation on dispersed TGN (Chen and 

Chen, 2018). This implies that Golgi fragmentation-induced 

Golgi stress constitutes an antiviral host defense by facilitating 

aggregation of NLRP3 inflammasome. Like the Influenza A vi-

rus, host cells infected by Shigella bacteria upregulate SIRT2, 

a potent lysine defatty-acylase, which is upregulated via the 

CREB3-mediated Golgi stress response (Wang et al., 2022). 

SIRT2 then removes the lysine fatty acylation that was intro-

duced by Shigella virulence factor IcsB to boost the innate 

immunity of the host, suggesting the importance of SIRT2 

in counteracting Shigella infection. In contrast to Shigella, a 

genome-wide CRISPR-Cas9 screen revealed that Plasmodium 

parasites, surprisingly, utilized Golgi stress during host infec-

tion (Vijayan et al., 2022). Knock-out of centromere protein J 

(CENPJ), a centrosomal MT organizing complex (MTOC) pro-

tein, enhances the efficiency of Plasmodium infection. This 

suggests that the parasite relies on non-centrosomal MT (Vi-

jayan et al., 2022). Considering that the host Golgi acts as a 

non-centrosomal MTOC (ncMTOC) at the parasite periphery 

and Golgi-mediated MTOC repositioning regulates host vesic-

ular trafficking to the parasite (De Niz et al., 2021; Romano et 

al., 2013; Zhu and Kaverina, 2013), the investigation of the 

involvement of ncMTOCs in the Golgi stress response would 

provide new insights into not only Golgi stress signaling but 

also novel mechanisms of parasite-host interactions.

 In non-small cell lung cancer (NSCLC), cellular retinoic acid 

binding protein 2 (CRABP2) is involved in PERK/ATF4-mediat-

ed Golgi stress (Meng and Luo, 2021). CRABP2 was initially 

identified as a regulator of retinoic acid signal transduction 

(Zhang et al., 2019). However, high CRABP2 levels correlate 

with poor prognoses, such as poor overall survival, increased 

recurrence, and advanced lymph node metastasis, in NSCLC 

patients (Wu et al., 2019). This implies that CRABP2-associ-

ated Golgi stress is involved in metastatic lung cancer via the 

PERK pathway.

 Notably, it has been linked to the neurotoxic effects of Gol-

gi stress (Suga et al., 2022). Golgi stress induced by several 

compounds such as monensin, nigericin, Exo2, and golgicide 

A increases the expression of ER-Golgi SNARE Syntaxin5 

isoforms, decreases βAPP processing, and consequently, in-

creases the accumulation of β-amyloid. However, when Golgi 

stress continues, caspase-3 is activated, leading to neuronal 

cell death. The Golgi stress-induced PERK pathway also con-

tributes to Huntington’s disease (Sbodio et al., 2018). How-

ever, mild-Golgi stress may have a cytoprotective role via the 

PERK pathway in Huntington’s disease. These results suggest 

that the Golgi stress response, like other stress responses, 

acts as a defense mechanism that allows cells to adapt or 

overcome stress under short and moderate stress conditions 

but acts as an aggravating factor that causes disease under 

strong and continuous stress conditions.

Potential therapeutic targets of the Golgi stress in human 
diseases
To improve the therapeutic index of a drug, it is most de-

sirable to deliver the therapeutic molecule in its active form 

to the intracellular therapeutic active site of the targeted 

organelle (Sakhrani and Padh, 2013). Strategies are being 

actively developed to improve efficacy and minimize the tox-

icity of drug treatment for targeting organelles, especially for 

the Golgi. For example, chondroitin sulfate-based prodrug 

nanoparticles have been recently developed to target the 

Golgi in tumor cells. They reduce photodynamic immuno-

therapy-mediated immunosuppression by blocking the pro-

duction of immunosuppressive cytokines (Li et al., 2022a).

 The development of Golgi stress response-targeting ther-

apeutics is a promising research area (Table 1). Results from 

previous studies have provided novel mechanistic insights 

to modulate Golgi stress response in diseases. For example, 

a low concentration of monensin prevents the toxicity as-

sociated with cysteine deprivation in Huntington’s disease 

by upregulating the reverse transsulfuration pathway by 

PERK-mediated Golgi stress response and its targets, includ-

ing cystathionine γ-lyase (Sbodio et al., 2018). This reveals 

that low-grade Golgi stress, which does not result in toxicity, 

can upregulate cytoprotective defensive systems and may 

prime or precondition cells to survive subsequent stresses. 

Therefore, rather than completely suppressing the Golgi 

stress response, balancing it at an appropriate level would be 
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Table 1. Potential therapeutic strategy targeting the Golgi stress in human diseases

Potential therapeutic 

target gene/pathway

Roles related to Golgi  

stress response in disease

Function in disease model

Reference
Related disease

Results by modulation of target gene/

pathway

Targeting the Golgi stress response

PERK/ATF4  

pathway

Inhibitor of protein  

translation/cell survival

HD Upregulation of CSE and restoration of 

cysteine metabolism by activation of the 

PERK/ATF4 pathway induced by low 

levels of monensin treatment

(Sbodio et al., 

2018)

Klotho,  

CREB34L/TFE3  

pathway

Cell proliferation,  

stress response  

and apoptosis

Immunosenescence Activation of CREB34L/TFE3 Golgi  

stress pathway and production of  

pro-inflammatory cytokines; Inhibition 

by klotho overexpression in monocyte

(Mytych et al., 

2020)

GM130/CASP3 Target of TFE3 pathway;  

Maintenance of Golgi  

structure/apoptosis

HSE caused  

by HSV-1 infection

GM130-mediated Golgi stress and 

down-regulation of GM130, occludin 

and claudin in HSV-1 infection; Reverse 

effects by overexpression of GM130

(He et al., 2020)

GM130 Control of protein  

glycosylation and  

vesicle transport

ICH Modification of Golgi morphology, 

GM130 decrease and autophagy  

by ICH; Reverse effects and  

neuroprotective effects by  

overexpression of GM130

(Deng et al., 

2022)

HIF-1α/HO-1  

pathway

Regulation of  

oxidative stress

ALI Increase of GM130, MAN2A1, Golgin 97 

and decrease of GOLPH3 by activation of 

HIF-1α/HO-1 pathway; Reverse effects by 

knockdown of HO-1

(Li et al., 2021)

CASP2 Apoptosis HDL 17 Recovery of differentiation by  

knockdown of CASP2 in myelin cell 

accompanying AIMP2 Y35X mutation

(Ochiai et al., 

2022)

Ferroptotic cell  

death cascade

non-apoptotic cell  

death characterized  

by iron-dependent  

oxidative degradation  

of lipids

Potential diseases  

related to ferroptosis; 

PVL, AKI, cancer,  

neurodegeration

Golgi stress induced by Golgi disruptors 

induces ferroptosis and apoptosis; 

Protective effect to Golgi and cell by 

ferroptosis inhibitor and low levels of 

ferroptosis inducers

(Alborzinia et al., 

2018)

Targeting the Golgi-associated degradation pathways

GARD/GM130 GM130 degradation  

by ubiquitin-proteasome

Multiple myeloma (MM) Activation of GM130-dependent Golgi 

stress response and apoptosis by  

monensin treatment in MM cells

(Eisenberg-Lerner  

et al., 2020)

EGAD Selective protein  

degradation by  

ubiquitin-proteasome

Potential diseases by 

defects in proteostasis

Proteasomal degradation of Orm2  

by Dsc ubiquitin ligase complex;  

Maintenance of sphingolipid homeosta-

sis

(Schmidt et al., 

2019)

GOMED/Wipi3 Alternative autophagy  

and degradation of  

secretory/cell membrane  

proteins

Diabetes Digestion of (pro)insulin granules in Atg7 

knockout β-cells

(Yamaguchi  

et al., 2016)

Neurodegenerative  

disease

Behavioral defects, cerebellar neuronal 

loss and iron accumulation caused by 

failure of alternative autophagy in Wipi3 

knockout mice

(Yamaguchi  

et al., 2020)

PERK, protein kinase RNA-like endoplasmic reticulum kinase; ATF4, activating transcription factor 4; HD, Huntington’s disease; CSE, cys-

tathionine γ-lyase; CREB34L, cyclic AMP response element binding 34L; TFE3, transcription factor binding to IGHM enhancer 3; GM130, 

Golgi matrix protein of 130 kDa; CASP3, caspase-3; HSE, herpes simplex encephalitis; HSV-1, herpes simplex virus 1; ICH, intracerebral 

hemorrhage; HIF-1α, hypoxia-inducible factor 1-alpha; HO-1, heme oxygenase-1; ALI, acute lung injury; MAN2A1, mannosidase alpha 

class 2A member 1; GOLPH3, Golgi phosphoprotein 3; CASP2, caspase-2; HDL, hypomyelinating leukodystrophies; AIMP2, aminoacyl-tR-

NA synthase complex-interacting multifunctional protein 2; PVL, periventricular leukomalacia; AKI, acute kidney injury; GARD, Golgi ap-

paratus-related degradation; EGAD, endosome and Golgi-associated degradation; GOMED, Golgi membrane-associated degradation.
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beneficial for treating Huntington’s disease.

 It is also possible that Golgi-associated degradation path-

ways such as GARD, EGAD, and GOMED are involved in 

proteinopathies, which have an archetypal feature of protein 

misfolding and accumulated structures (Bayer, 2015). The 

clearance of the proteins is essential for maintaining cell 

integrity (Bae et al., 2012; Deleidi and Maetzler, 2012). For 

example, the brain could be damaged by the dysfunction of 

protein clearance including unfolded protein response, auto-

phagy, and phagocytosis (Alvarez-Erviti et al., 2010; Chiti and 

Dobson, 2017; Hartl, 2017; Kumar et al., 2016). Theoretical-

ly, enhancing the clearance capacity of the proteins via the 

Golgi stress-induced degradation pathway would provide a 

novel approach to treating proteinopathies including neuro-

degenerative diseases.

CONCLUSION AND PERSPECTIVES

The Golgi research area has focused on the structure and 

function of the Golgi or Golgi proteins. However, only a 

few studies exist on Golgi stress-associated pathogenesis. 

The extent and significance of the Golgi stress response are 

not entirely known. This is primarily due to a lack of reliable 

and precise experimental approaches specific to the Golgi. 

However, Golgi-specific experimental methods, particularly 

imaging techniques, are being actively developed. GolROS has 

been developed as a fluorescence probe for O2
- and H2O2 in 

the Golgi (Wang et al., 2019). It could quantitatively measure 

the Golgi reactive oxygen species and the pharmacological 

effect of antihypertensive drugs. In addition to GolROS, several 

other Golgi-targeted probes have been developed. Golgi-NO 

has been developed as the Golgi-targeted fluorescent probe 

for visualizing nitric oxide (NO) in the Golgi (He et al., 2022). 

NO is a crucial neurotransmitter involved in various diseas-

es, including Alzheimer’s disease. This novel Golgi-targeted 

probe would be used as a tool for investigating the dysfunc-

tional role of nitrosylation. Gol-NCS, an isothiocyanate-based 

Golgi-targeting fluorescent probe for cysteine (Cys), has been 

developed to detect the fluctuation of Cys content of Golgi 

and monitor the production of endogenous Cys during Golgi 

stress (Zhu et al., 2022). Golgi-Nap-CORM-3 is a Golgi-tar-

getable fluorescent probe that detects carbon monoxide 

(CO)-releasing molecule-3 (CORM-3). It consists mainly of 

metal carbonyl compounds and is used as an experimental 

tool to deliver CO (Li et al., 2022b). Many different fluores-

cent probes have been developed that specifically target the 

Golgi, and they may prove helpful in advancing our under-

standing of the diseases associated with Golgi stress.

 Insights from the above aspects will facilitate the under-

standing of why Golgi stress is induced via different pathways 

and how distinct Golgi stress signaling pathways are implicat-

ed in human diseases. To modulate the Golgi stress response 

with a therapeutic potential for various diseases, the char-

acterization of the signaling pathways induced by the Golgi 

stress, the various substrates, and their regulatory processes 

is paramount. Golgi stress response is an active research area 

with many challenging questions. A comprehensive under-

stating of the Golgi stress response will provide a complete 

view of the role of Golgi-associated pathogenesis in diseases, 

including diabetes, infectious diseases, inflammatory diseas-

es, cancer, and neurodegenerative diseases
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