• Title/Summary/Keyword: Positive operator

Search Result 210, Processing Time 0.023 seconds

A LOCAL APPROXIMATION METHOD FOR THE SOLUTION OF K-POSITIVE DEFINITE OPERATOR EQUATIONS

  • Chidume, C.E.;Aneke, S.J.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.4
    • /
    • pp.603-611
    • /
    • 2003
  • In this paper we extend the definition of K-positive definite operators from linear to Frechet differentiable operators. Under this setting, we derive from the inverse function theorem a local existence and approximation results corresponding to those of Theorems land 2 of the authors [8], in an arbitrary real Banach space. Furthermore, an asymptotically K-positive definite operator is introduced and a simplified iteration sequence which converges to the unique solution of an asymptotically K-positive definite operator equation is constructed.

FREE PRODUCTS OF OPERATOR SYSTEMS

  • Pop, Florin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.659-669
    • /
    • 2022
  • In this paper we introduce the notion of universal free product for operator systems and operator spaces, and prove extension results for the operator system lifting property (OSLP) and operator system local lifting property (OSLLP) to the universal free product.

Integral Operator of Analytic Functions with Positive Real Part

  • Frasin, Basem Aref
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.1
    • /
    • pp.77-85
    • /
    • 2011
  • In this paper, we introduce the integral operator $I_{\beta}$($p_1$, ${\ldots}$, $p_n$; ${\alpha}_1$, ${\ldots}$, ${\alpha}_n$)(z) analytic functions with positive real part. The radius of convexity of this integral operator when ${\beta}$ = 1 is determined. In particular, we get the radius of starlikeness and convexity of the analytic functions with Re {f(z)/z} > 0 and Re {f'(z)} > 0. Furthermore, we derive sufficient condition for the integral operator $I_{\beta}$($p_1$, ${\ldots}$, $p_n$; ${\alpha}_1$, ${\ldots}$, ${\alpha}_n$)(z) to be analytic and univalent in the open unit disc, which leads to univalency of the operators $\int\limits_0^z(f(t)/t)^{\alpha}$dt and $\int\limits_0^z(f'(t))^{\alpha}dt$.

Characterization of Some Classes of Distributions Related to Operator Semi-stable Distributions

  • Joo, Sang Yeol;Yoo, Young Ho;Choi, Gyeong Suk
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.1
    • /
    • pp.177-189
    • /
    • 2003
  • For a positive integer m, operator m-semi-stability and the strict operator m-semi-stability of probability measures on R^d$ are defined. The operator m-semi-stability is a generalization of the definition of operator semi-stability with exponent Q. Characterization of strictly operator na-semi-stable distributions among operator m-semi-stable distributions is given. Translation of strictly operator m-semi-stable distribution is discussed.

A NOTE ON APPROXIMATION OF SOLUTIONS OF A K-POSITIVE DEFINITE OPERATOR EQUATIONS

  • Osilike, M.O.;Udomene, A.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.231-236
    • /
    • 2001
  • In this note we construct a sequence of Picard iterates suitable for the approximation of solutions of K-positive definite operator equations in arbitrary real Banach spaces. Explicit error estimate is obtained and convergence is shown to be as fast as a geometric progression.

  • PDF

POSITIVE LINEAR OPERATORS IN C*-ALGEBRAS

  • Park, Choon-Kil;An, Jong-Su
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.1031-1040
    • /
    • 2009
  • It is shown that every almost positive linear mapping h : $\mathcal{A}\rightarrow\mathcal{B}$ of a Banach *-algebra $\mathcal{A}$ to a Banach *-algebra $\mathcal{B}$ is a positive linear operator when h(rx) = rh(x) (r > 1) holds for all $x\in\mathcal{A}$, and that every almost linear mapping h : $\mathcal{A}\rightarrow\mathcal{B}$ of a unital C*-algebra $\mathcal{A}$ to a unital C*-algebra $\mathcal{B}$ is a positive linear operator when h($2^nu*y$) = h($2^nu$)*h(y) holds for all unitaries $u\in \mathcal{A}$, all $y \in \mathcal{A}$, and all n = 0, 1, 2, ..., by using the Hyers-Ulam-Rassias stability of functional equations. Under a more weak condition than the condition as given above, we prove that every almost linear mapping h : $\mathcal{A}\rightarrow\mathcal{B}$ of a unital C*-algebra $\mathcal{A}$ A to a unital C*-algebra $\mathcal{B}$ is a positive linear operator. It is applied to investigate states, center states and center-valued traces.

Unbounded Scalar Operators on Banach Lattices

  • deLaubenfels, Ralph
    • Honam Mathematical Journal
    • /
    • v.8 no.1
    • /
    • pp.1-19
    • /
    • 1986
  • We show that a (possibly unbounded) linear operator, T, is scalar on the real line (spectral operator of scalar type, with real spectrum) if and only if (iT) generates a uniformly bounded semigroup and $(1-iT)(1+iT)^{-1}$ is scalar on the unit circle. T is scalar on [0, $\infty$) if and only if T generates a uniformly bounded semigroup and $(1+T)^{-1}$ is scalar on [0,1). By analogy with these results, we define $C^0$-scalar, on the real line, or [0. $\infty$), for an unbounded operator. We show that a generator of a positive-definite group is $C^0$-scalar on the real line. and a generator of a completely monotone semigroup is $C^0$-scalar on [0, $\infty$). We give sufficient conditions for a closed operator, T, to generate a positive-definite group: the sequence < $\phi(T^{n}x)$ > $_{n=0}^{\infty}$ must equal the moments of a positive measure on the real line, for sufficiently many positive $\phi$ in $X^{*}$, x in X. If the measures are supported on [0, $\infty$), then T generates a completely monotone semigroup. On a reflexive Banach lattice, these conditions are also necessary, and are equivalent to T being scalar, with positive projection-valued measure. T generates a completely monotone semigroup if and only if T is positive and m-dispersive and generates a bounded holomorphic semigroup.

  • PDF

Characterization of some classes of distributions related to operator semi-stable distributions

  • Joo, Sang-Yeol;Choi, Gyeong-Suk
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.11a
    • /
    • pp.221-225
    • /
    • 2002
  • For a positive integer m, operator m-semi-stability and the strict operator m-semi-stability of probability measures on $R^{d}$ are defined. The operator m-semi-stability is a generalization of the definition of operator semi- stability with exponent Q. Translation of strictly operator m-semi-stable distribution is discussed.

  • PDF