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POSITIVE LINEAR OPERATORS IN C∗-ALGEBRAS

Choonkil Park and Jong Su An

Abstract. It is shown that every almost positive linear mapping h : A →
B of a Banach ∗-algebra A to a Banach ∗-algebra B is a positive linear
operator when h(rx) = rh(x) (r > 1) holds for all x ∈ A, and that every
almost linear mapping h : A → B of a unital C∗-algebra A to a unital
C∗-algebra B is a positive linear operator when h(2nu∗y) = h(2nu)∗h(y)
holds for all unitaries u ∈ A, all y ∈ A, and all n = 0, 1, 2, . . ., by using
the Hyers-Ulam-Rassias stability of functional equations.

Under a more weak condition than the condition as given above, we
prove that every almost linear mapping h : A → B of a unital C∗-algebra
A to a unital C∗-algebra B is a positive linear operator. It is applied to
investigate states, center states and center-valued traces.

1. Introduction and preliminaries

Ulam [24] gave a talk before the Mathematics Club of the University of
Wisconsin in which he discussed a number of unsolved problems. Among these
was the following question concerning the stability of homomorphisms.

We are given a group G and a metric group G′ with metric ρ(·, ·). Given ε >
0, does there exist a δ > 0 such that if f : G→ G′ satisfies ρ(f(xy), f(x)f(y)) <
δ for all x, y ∈ G, then a homomorphism h : G→ G′ exists with ρ(f(x), h(x)) <
ε for all x ∈ G?

By now an affirmative answer has been given in several cases, and some
interesting variations of the problem have also been investigated.

Hyers [4] considered the case of approximately additive mappings f : E →
E′, where E and E′ are Banach spaces and f satisfies Hyers inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε
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for all x, y ∈ E. It was shown that the limit

L(x) = lim
n→∞

2−nf(2nx)

exists for all x ∈ E and that L : E → E′ is the unique additive mapping
satisfying

‖f(x)− L(x)‖ ≤ ε.

Th. M. Rassias [19] provided a generalization of Hyers’ Theorem which allows
the Cauchy difference to be unbounded.

Theorem 1.1 (Th. M. Rassias). Let f : E → E′ be a mapping from a normed
vector space E into a Banach space E′ subject to the inequality

(1.1) ‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then the
limit

L(x) = lim
n→∞

2−nf(2nx)

exists for all x ∈ E and L : E → E′ is the unique additive mapping which
satisfies

(1.2) ‖f(x)− L(x)‖ ≤ 2ε
2− 2p

‖x‖p

for all x ∈ E. If p < 0, then inequality (1.1) holds for x, y 6= 0 and (1.2) for
x 6= 0. Also, if for each x ∈ E the function f(tx) is continuous in t ∈ R, then
L is R-linear.

Th. M. Rassias [20] during the 27th International Symposium on Functional
Equations asked the question whether such a theorem can also be proved for
p ≥ 1. Gajda [2] following the same approach as in Th. M. Rassias [19], gave an
affirmative solution to this question for p > 1. It was shown by Gajda [2], as well
as by Th. M. Rassias and Šemrl [22] that one cannot prove a Th. M. Rassias’
type theorem when p = 1. The counterexamples of Gajda [2], as well as of
Th. M. Rassias and Šemrl [22] have stimulated several mathematicians to invent
new definitions of approximately additive or approximately linear mappings, cf.
P. Găvruta [3], who among others studied the Hyers-Ulam-Rassias stability of
functional equations. The inequality (1.1) that was introduced for the first
time by Th. M. Rassias [19] provided a lot of influence in the development
of a generalization of the Hyers-Ulam stability concept. This new concept is
known as Hyers-Ulam-Rassias stability of functional equations (cf. the book
of D. H. Hyers, G. Isac, and Th. M. Rassias [5]). Jun and Lee [10] proved the
stability of Jensen’s equation. Park [16] applied the Găvruta’s result to linear
functional equations in Banach modules over a C∗-algebra.

Beginning around the year 1980, the topic of approximate homomorphisms
and their stability theory in the field of functional equations and inequalities
was taken up by several mathematicians (cf. D. H. Hyers and Th. M. Rassias
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[6], Th. M. Rassias [21] and the references therein). For further research de-
velopments in stability of functional equations the readers are referred to the
works of K. Jun and H. Kim [8, 9], H. Kim [14], M. S. Moslehian [15], C. Park
[18] and the references cited therein.

Johnson [7, Theorem 7.2] also investigated almost algebra ∗-homomorphisms
between Banach ∗-algebras: Suppose that U and B are Banach ∗-algebras which
satisfy the conditions of [7, Theorem 3.1]. Then for each positive ε and K
there is a positive δ such that if T ∈ L(U ,B) with ‖T‖ < K, ‖T∨‖ < δ and
‖T (x∗)∗ − T (x)‖ ≤ δ‖x‖ (x ∈ U), then there is a ∗-homomorphism T ′ : U → B
with ‖T − T ′‖ < ε. Here L(U ,B) is the space of bounded linear maps from U
into B, and T∨(x, y) = T (xy)− T (x)T (y) (x, y ∈ U). See [7] for details.

By a positive linear operator h : A → B of a Banach ∗-algebra A to a Banach
∗-algebra B, we mean a linear mapping with the property h(x∗x) = h(x)∗h(x)
for all x ∈ A. In particular, if A and B are C∗-algebras, then h maps positive
elements of A into positive elements of B. Recall that an element x in a C∗-
algebra A is positive if and only if there exists y ∈ A such that x = y∗y.

In Section 2, using the Hyers-Ulam-Rassias stability method, we prove that
every almost positive linear mapping h : A → B of a Banach ∗-algebra A to
a Banach ∗-algebra B is a positive linear operator when h(rx) = rh(x) holds
for some r > 1 and all x ∈ A. In Section 3, in Theorem 3.1, we prove that
every almost linear mapping h : A → B of a unital C∗-algebra A to a unital
C∗-algebra B is a positive linear operator when h(2nu∗y) = h(2nu)∗h(y) holds
for all unitaries u ∈ A, all y ∈ A, and all n = 0, 1, 2, . . .. Then in Theorem 3.2,
we weaken the conditions of Theorem 3.1 to obtain the same conclusion.

In Section 4, the results of Sections 2 and 3 are applied to investigate states,
center states and center-valued traces.

2. Positive linear operators in Banach ∗-algebras

We investigate positive linear operators in Banach C∗-algebras associated
with the Cauchy functional equation f(x+ y) = f(x) + f(y).

Theorem 2.1. Let A and B be (complex) Banach ∗-algebras, and h : A → B
a mapping satisfying h(rx) = rh(x) for some r > 1 and all x ∈ A for which
there exists a function ϕ : A3 → [0,∞) such that

(2.1) lim
j→∞

r−jϕ(rjx, rjy, rjz) = 0,

(2.2) ‖h(µx+ µy + z∗z)− µh(x)− µh(y)− h(z)∗h(z)‖ ≤ ϕ(x, y, z)

for all µ ∈ T1 := {λ ∈ C | |λ| = 1} and all x, y, z ∈ A. Then the mapping
h : A → B is a positive linear operator.
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Proof. Since h(0) = rh(0), h(0) = 0. Put z = 0 and µ = 1 ∈ T1 in (2.2). By
(2.2) and the assumption that h(rx) = rh(x) for all x ∈ A,

‖h(x+ y)− h(x)− h(y)‖ = r−n‖h(rnx+ rny)− h(rnx)− h(rny)‖
≤ r−nϕ(rnx, rny, 0),

which tends to zero as n→∞ by (2.1). So

(2.3) h(x+ y) = h(x) + h(y)

for all x, y ∈ A.
Put y = z = 0 in (2.2). By (2.2) and the assumption that h(rx) = rh(x) for

all x ∈ A,

‖h(µx)− µh(x)‖ = r−n‖h(rnµx)− µh(rnx)‖ ≤ r−nϕ(rnx, 0, 0),

which tends to zero as n→∞ by (2.1). So

(2.4) h(µx) = µh(x)

for all µ ∈ T1 and x ∈ A.
Now let λ ∈ C (λ 6= 0) and M an integer greater than 4|λ|. Then | λ

M | <
1
4 < 1− 2

3 = 1
3 . By [11, Theorem 1], there exist three elements µ1, µ2, µ3 ∈ T1

such that 3 λ
M = µ1 + µ2 + µ3. So by (2.3) and (2.4)

h(λx) = h

(
M

3
· 3 λ
M
x

)
= M · h

(
1
3
· 3 λ
M
x

)
=
M

3
h

(
3
λ

M
x

)

=
M

3
h(µ1x+ µ2x+ µ3x) =

M

3
(h(µ1x) + h(µ2x) + h(µ3x))

=
M

3
(µ1 + µ2 + µ3)h(x) =

M

3
· 3 λ
M
h(x)

= λh(x)

for all x ∈ A. If λ = 0, then we also have h(λx) = h(0) = 0 = λh(x) for all
x ∈ A. Hence

h(ζx+ ηy) = h(ζx) + h(ηy) = ζh(x) + ηh(y)

for all ζ, η ∈ C and all x, y ∈ A. So the mapping h : A → B is a C-linear
mapping.

Put x = y = 0 in (2.2). By (2.2) and the assumption that h(rx) = rh(x) for
all x ∈ A,

‖h(z∗z)− h(z)∗h(z)‖ = r−2n‖h(rnz∗rnz)− h(rnz)∗h(rnz)‖
≤ r−2nϕ(0, 0, rnz) ≤ r−nϕ(0, 0, rnz),

which tends to zero as n→∞ by (2.1). So

h(z∗z) = h(z)∗h(z)

for all z ∈ A. Thus h : A → B is positive.
Therefore, the mapping h : A → B is a positive linear operator. �
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Corollary 2.2. Let A and B be (complex) Banach ∗-algebras, and h : A → B
a mapping satisfying h(rx) = rh(x) for some r > 1 and all x ∈ A for which
there exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖h(µx+ µy + z∗z)− µh(x)− µh(y)− h(z)∗h(z)‖ ≤ θ(||x||p + ||y||p + ||z||p)
for all µ ∈ T1 and all x, y, z ∈ A. Then the mapping h : A → B is a positive
linear operator.

Proof. Define ϕ(x, y, z) = θ(||x||p + ||y||p + ||z||p), and apply Theorem 2.1. �
Theorem 2.3. Let A and B be (complex) Banach ∗-algebras, and h : A → B
a mapping satisfying h(rx) = rh(x) for some r > 1 and all x ∈ A for which
there exists a function ϕ : A3 → [0,∞) satisfying (2.1) such that

(2.5) ‖h(µx+ µy + z∗z)− µh(x)− µh(y)− h(z)∗h(z)‖ ≤ ϕ(x, y, z)

for µ = 1, i, and all x, y, z ∈ A. If h(tx) is continuous in t ∈ R for each fixed
x ∈ A, then the mapping h : A → B is a positive linear operator.

Proof. Put z = 0 and µ = 1 in (2.5). By the same reasoning as in the proof of
Theorem 2.1, the mapping h : A → B is additive. Thus h(tx) = th(x) for any
rational number t and all x ∈ A. For every t ∈ R, there exists a sequence of
rational numbers {tn} such that t = limn→∞ tn. Since the mapping t 7→ h(tx)
is continuous for each fixed x ∈ A, we conclude h(tx) = th(x). Thus h is
R-linear.

Put y = z = 0 and µ = i in (2.5). By the same method as in the proof of
Theorem 2.1, one can obtain that

h(ix) = ih(x)

for all x ∈ A. For each element λ ∈ C, λ = s+ it, where s, t ∈ R. So

h(λx) = h(sx+ itx) = sh(x) + th(ix) = sh(x) + ith(x) = (s+ it)h(x) = λh(x)

for all λ ∈ C and all x ∈ A. So

h(ζx+ ηy) = h(ζx) + h(ηy) = ζh(x) + ηh(y)

for all ζ, η ∈ C, and all x, y ∈ A. Hence the additive mapping h : A → B is
C-linear.

The rest of the proof is the same as in the proof of Theorem 2.1. �

3. Positive linear operators in unital C∗-algebras

From now on, assume that A and B are unital C∗-algebras. Let e be a unit
in A and let e′ be a unit in B. Let U(A) := {u ∈ A | uu∗ = u∗u = e}.
Theorem 3.1. Let h : A → B be a mapping satisfying h(0) = 0 and h(2nu∗y) =
h(2nu)∗h(y) for all u ∈ U(A), all y ∈ A, and all n = 0, 1, 2, . . ., for which there
exists a function ϕ : A×A → [0,∞) such that

(3.1) ϕ̃(x, y) :=
∞∑

j=0

2−jϕ(2jx, 2jy) <∞,
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(3.2) ‖h(µx+ µy)− µh(x)− µh(y)‖ ≤ ϕ(x, y)

for all µ ∈ T1 and all x, y ∈ A. Assume that limn→∞ 2−nh(2ne) = e′. Then
the mapping h : A → B is a positive linear operator.

Proof. Put µ = 1 ∈ T1 in (3.2). It follows from Găvruta Theorem [3] that
there exists a unique additive mapping H : A → B such that

‖h(x)−H(x)| ≤ 2−1ϕ̃(x, x)

for all x ∈ A. The additive mapping H : A → B is given by

H(x) = lim
n→∞

2−nh(2nx)

for all x ∈ A.
Put y = 0 in (3.2). Then ‖h(µx)− µh(x)‖ ≤ ϕ(x, 0). So

2−n‖h(2nµx)− µh(2nx)‖ ≤ 2−nϕ(2nx, 0),

which tends to zero as n→∞ for all µ ∈ T1 and all x ∈ A. Hence

H(µx) = lim
n→∞

2−nh(2nµx) = lim
n→∞

2−nµh(2nx) = µH(x)

for all µ ∈ T1 and all x ∈ A.
By the same method as in the proof of Theorem 2.1, one can show that the

unique additive mapping H : A → B is a C-linear operator.
Since h(2nu∗y) = h(2nu)∗h(y) for all u ∈ U(A), all y ∈ A, and all n =

0, 1, 2, . . .,

(3.3) H(u∗y) = lim
n→∞

2−nh(2nu∗y) = lim
n→∞

2−nh(2nu)∗h(y) = H(u)∗h(y)

for all u ∈ U(A) and all y ∈ A. By the additivity of H and (3.3),

2nH(u∗y) = H(2nu∗y) = H(u∗(2ny)) = H(u)∗h(2ny)

for all u ∈ U(A) and all y ∈ A. Hence

(3.4) H(u∗y) = 2−nH(u)∗h(2ny) = H(u)∗ · 2−nh(2ny)

for all u ∈ U(A) and all y ∈ A. Taking the limit in (3.4) as n→∞, we obtain

(3.5) H(u∗y) = H(u)∗H(y)

for all u ∈ U(A) and all y ∈ A. Since H is C-linear and each x ∈ A is a
finite linear combination of unitary elements (see [12, Theorem 4.1.7]), i.e.,
x =

∑m
j=1 λjuj (λj ∈ C, uj ∈ U(A)), it follows from (3.5) that

H(x∗y) = H(
m∑

j=1

λju
∗
jy) =

m∑

j=1

λjH(u∗jy) =
m∑

j=1

λjH(uj)∗H(y)

= H(
m∑

j=1

λjuj)∗H(y) = H(x)∗H(y)

for all x, y ∈ A. In particular,

H(x∗x) = H(x)∗H(x)
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for all x ∈ A. So H : A → B is a positive linear operator.
By (3.3) and (3.5),

H(e)∗H(y) = H(e∗y) = H(e)∗h(y)

for all y ∈ A. Since H(e) = limn→∞ 2−nh(2ne) = e′,

H(y) = h(y)

for all y ∈ A.
Therefore, the mapping h : A → B is a positive linear operator. �

We investigate positive linear operators in unital C∗-algebras associated with
the Cauchy functional equation.

Theorem 3.2. Let h : A → B be a mapping with h(0) = 0 for which there
exists a function ϕ : A3 → [0,∞) such that

(3.6) ϕ̃(x, y, z) :=
∞∑

j=0

2−jϕ(2jx, 2jy, 2jz) <∞,

(3.7) ‖h(µx+ µy + 2nu∗z)− µh(x)− µh(y)− h(2nu)∗h(z)‖ ≤ ϕ(x, y, z)

for all µ ∈ T1, all u ∈ U(A), all n = 0, 1, 2, . . ., and all x, y, z ∈ A. Assume
that limn→∞ 2−nh(2ne) = e′. Then the mapping h : A → B is a positive linear
operator.

Proof. Put z = 0 and µ = 1 in (3.7). It follows from Găvruta Theorem [3] that
there exists a unique additive mapping H : A → B such that

‖h(x)−H(x)‖ ≤ 2−1ϕ̃(x, x, 0)

for all x ∈ A. The additive mapping H : A → B is given by

H(x) = lim
n→∞

2−nh(2nx)

for all x ∈ A.
Put x = y = 0 in (3.7). Then

‖h(2nu∗z)− h(2nu)∗h(z)‖ ≤ ϕ(0, 0, z)

for all z ∈ A. So

2−n‖h(2nu∗z)− h(2nu)∗h(z)‖ ≤ 2−nϕ(0, 0, z),

which tends to zero as n→∞. Replacing z by y, one can obtain

H(u∗y) = lim
n→∞

2−nh(2nu∗y) = lim
n→∞

2−nh(2nu)∗h(y) = H(u)∗h(y)

for all u ∈ U(A) and all y ∈ A.
The rest of the proof is similar to the proofs of Theorems 2.1 and 3.1. �
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4. Positive linear functionals on C∗-algebras

States and traces are so important in the theory of C∗-algebras and von
Neumann algebras (see [1, 12, 13, 17, 23]).

By a state on A we mean a positive linear functional ρ : A → C such that
ρ(e) = 1. We describe ρ as a tracial state if, in addition, ρ(xy) = ρ(yx) for all
x, y ∈ A. A state ρ is called pure if every positive linear functional ψ on A,
majorized by ρ in the sense that ψ(x∗x) ≤ ρ(x∗x), is of the form λρ, 0 ≤ λ ≤ 1.

Theorem 4.1. Let h : A → C be a function with h(0) = 0 for which there
exists a function ϕ : A3 → [0,∞) satisfying (3.6) such that

|h(µx+ µy + 2nu∗z)− µh(x)− µh(y)− h(2nu)f(z)| ≤ ϕ(x, y, z)

for all µ ∈ T1, all u ∈ U(A), all n = 0, 1, 2, . . ., and all x, y, z ∈ A. Assume
that limn→∞ 2−nh(2ne) = 1. Then the function h : A → C is a pure and tracial
state.

Proof. According to the proof of Theorem 3.2, the mapping h : A → C is a
positive linear operator such that

(4.1) h(x∗y) = h(x)h(y)

for all x, y ∈ A. In particular, h(e) = |h(e)|2. This implies h(e) = 1, so h is a
state. Furthermore,

h(x∗) = h(x∗e) = h(x)h(e) = h(x)

for all x ∈ A. Thus (4.1) yields

h(xy) = h(x∗)h(y) = h(x)h(y)

for all x, y ∈ A. Then we have

h(xy) = h(x)h(y) = h(y)h(x) = h(yx),

so h is a tracial state. By [12, Proposition 4.4.1] and the remark following the
proposition, h is a pure state. �

By a center state on A we mean a positive linear operator ρ : A → Z, where
Z is the center of A, such that ρ(c) = c and ρ(cx) = cρ(x) for all c ∈ Z and
all x ∈ A. By a center-valued trace on A we mean a positive linear operator
τ : A → Z such that τ(c) = c and τ(xy) = τ(yx) for all c ∈ Z and all x, y ∈ A.

Theorem 4.2. Let h : A → Z be a mapping with h(0) = 0 for which there
exists a function ϕ : A3 → [0,∞) satisfying (3.6) such that

‖h(wx+ wy + 2nu∗z)− wh(x)− wh(y)− h(2nu)∗h(z)‖ ≤ ϕ(x, y, z)

for all w ∈ U(Z), all u ∈ U(A), all n = 0, 1, 2, . . ., and all x, y, z ∈ A. Assume
that limn→∞ 2−nh(2ne) = e. Then the mapping h : A → Z is a center state
and center-valued trace.
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Proof. For w = µe, with µ ∈ T1, we get the condition (3.7). So Theorem 3.2
implies that h is a positive linear operator. Thus

‖h(wx)− wh(x)‖ = 2−n‖h(2nwx)− wh(2nx)‖ ≤ 2−nϕ(2nx, 0, 0),

which tends to zero as n → ∞. Therefore, h(wx) = wh(x) for all w ∈ U(Z)
and all x ∈ A. This yields h(cx) = ch(x) for all c ∈ Z and all x ∈ A. Since
h(e) = e,

h(c) = h(ce) = ch(e) = c

for all c ∈ Z. Hence h is a center state.
For x = y = 0, we get

‖h(u∗z)− h(u)∗h(z)‖ = 2−n‖h(2nu∗z)− h(2nu)∗h(z)‖ ≤ 2−nϕ(0, 0, z),

which tends to zero as n → ∞. Hence H(u∗z) = H(u)∗h(z) for all u ∈ U(Z)
and all z ∈ A. In particular,

h(u∗) = h(u∗e) = h(u)∗h(e) = h(u)∗.

Therefore,
h(uz) = h(u∗)∗h(z) = h(u)h(z)

for all u ∈ U(Z) and all z ∈ A. This yields

h(xy) = h(x)h(y)

for all x, y ∈ A. Hence

h(xy) = h(x)h(y) = h(y)h(x) = h(yx)

for all x, y ∈ A, so h is a center-valued trace. �
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