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A LOCAL APPROXIMATION METHOD
FOR THE SOLUTION OF K-POSITIVE
DEFINITE OPERATOR EQUATIONS

C. E. CHIDUME AND S. J. ANEKE

ABSTRACT. In this paper we extend the definition of K-positive
definite operators from linear to Fréchet differentiable operators.
Under this setting, we derive from the inverse function theorem a
local existence and approximation results corresponding to those of
Theorems 1 and 2 of the authors [8], in an arbitrary real Banach
space. Furthermore, an asymptotically K-positive definite operator
is introduced and a simplified iteration sequence which converges
to the unique solution of an asymptotically K-positive definite op-
erator equation is constructed.

1. Introduction

Let H; be a dense subspace of a Hilbert space, H. An operator 7" with
domain D(T') D Hj is called continuously Hy invertible if the range of T,
R(T), with T considered an operator restricted to H; is dense in H and
T has a bounded inverse on R(T). Let H be a complex and separable
Hilbert space and A be a linear unbounded operator defined on a dense
domain D(A) in H with the property that there exists a continuously
D(A)—invertible closed linear operator K with D(A) C D(K), and a
constant ¢ > 0 such that

(1.1) (Au, Ku) > c||Ku|?, u € D(A),

then A is called K -positive definite (Kpd) (see e.g. [13]). If K = I (the
identity operator) inequality (1.1) reduces to (Au,u) > cljul|?, and in
this case, A is called positive definite. If in addition ¢ = 0, A is called
positive operator (or accretive operator). Positive definite operators have
been studied by various authors (see, e.g. [1,2, 3,6, 7, 15]. It is clear that
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the class of Kpd operators contains among others, the class of positive
definite operators, and also contains the class of invertible operators
(when K = A as its subclasses. Furthermore, Petryshyn [13] remarked
that for a proper choice of K, the ordinary differential operators of odd
order, the weakly elliptic partial differential operators of odd order, are
members of the class of Kpd operators . Moreover, if the operators are
bounded, the class of Kpd operators forms a subclass of symmetrizable
operators studied by Reid [15].
In (13], Petryshyn proved the following theorem.

THEOREM P. If A is a Kpd operator and D(A) = D(K), then there
exists a constant o > 0 such that for all u € D(K),

[|Aul| < of [ Kul|.

Furthermore, the operator A is closed, R(A) = H and the equation
Au = f, f € H, has a unique solution.

In the case that K is bounded and A is closed, F. E. Browder [3]
obtained a result similar to the second part of Theorem P.

In [8], the authors extended the notion of a K-positive definite (Kpd)
operator to real separable Banach spaces, X. In particular, if X is a
real separable Banach space with a strictly convex dual, we proved that
the equation Au = f, f € X, where A is a Kpd operator with the same
domain as K has a unique solution. Furthermore, if X = Lp (or Ip), p >
2, and is separable, we constructed an iteration process which converges
strongly to this solution.

Precisely, the following theorems were proved in [8].

THEOREM CA1l. Let X be a real separable Banach space with a
strictly convex dual and let A be a Kpd operator with D(A) = D(K).
Suppose that for all z,y € D(K),

(Az,j(Ky)) = (K=, j(i(Ay)),
then there exists a constant w > 0 such that for x € D(A),
1 Az|| < w||Kz|.

Furthermore, the operator A is closed, R(A) = X and the equation
Ax = h, for each h € X, has a unique solution.

THEOREM CA2. Suppose X = Lp or l,,p > 2, and is separable.
Suppose A : D(A) C X — X is a Kpd operator with D(A) = D(K) =
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R(K) and that for all z,y € D(A), (Az,j(Ky)) = (K=, j(Ay)). Define
the sequence {x,} iteratively by

(1.2) xo € D(K)

(1.3) Tntl = Tpn + tn K Yrn, n >0,
<B7'mj(Krn)> -1

14 ty = —————2% where B= KAK

14 "= o= DBl

and

(1.5) o = f — Azp, f € R(K).

If A and K commute, then {z,}e converges strongly to the unique
solution of Ax = f in X.

In [10], the authors extended the above result to a larger space, the
g-uniformly smooth Banach spaces.

Let K be a subset of a real Banach space E. AmapT : K - K
is called a strict contraction if there exists k € [0,1) such that ||Tz —
Ty|| < k||z — ]|, and it is called nonezpansive if, for arbitrary z,y € K,
[Tz — Ty|| < ||z — y||. The map T is called pseudocontractive if, for
each z,y € K, there exists j(z — y) € J(x — y) such that

(Tz — Ty, j(z —y)) < llz —yl*
In 1972, Goebel and Kirk [11} introduced a class of mappings generaliz-
ing the class of nonexpansive operators.

Let K be a nonempty subset of a normed space £. A mapping
T : K — K is called asymptotically nonexpansive if there exists a
sequence {ky}, k, > 1, such that lim, o &k, = 1, and ||T"z — T"y|| <
kn||x — y|| for each z, y in K and for each integer n > 1.

Later in 1993, Bruck et. al. introduced and studied another class
of asymptotic nonexpansive maps. A mapping 7' : K — K is called
asymptotically nonexpansive in the intermediate sense (see e.g., Bruck
et. al. [5]) provided T is uniformly continuous and

lim sup { sup ([|[T"z — T"yl| — |jo — yll)} <o0.
n—oo | z,yeK

Asymptotic pseudocontractive operators have also been introduced and

studied, first by Schu (see e.g., [16]) and then by a host of other authors,

as a generalization of asymptotic nonexpansive maps. T : K — K is

called asymptotically pseudocontractive if there exists a sequence {k,},

kn, > 1, limk, = 1 such that

Tz — Ty, j(z — y)) < knllz — yl|?
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for each z, y € K.

It is easy to see that asymptotically pseudocontractive maps include
the asymptotic nonexpansive ones. These classes of maps have been
studied by various authors.

Motivated by Goebel and Kirk [11], Bruck et. al. [5] and Schu [16], we
now introduce the class of asymptotically K-positive definite operators.

DEFINITION 1.1. Let X be a Banach space and let A be a linear un-
bounded operator defined on a dense domain, D(A), in X. The operator
A will be called asymptotically K-positive definite Kpd if there exist a
continuously D(A)—invertible closed linear operator K with D(K) D
D(A) D R(A), and a constant ¢ > 0 such that for j(Ku) € J(Ku),

(1.6) (K" L Au, j(K™u)) > ckn||K™ul|?,  u € D(A),
where {k,} is a real sequence such that k, > 1,lim,—c kn = 1.

It is our purpose in this paper to extend the notion of a kpd operator
to Fréchet differentiable operators. Under this setting, a local existence
theorem and an iterative scheme which converges to the unique solution
of the Kpd operator equation in an arbitrary Banach spaces, are derived
from the inverse function theorem. Moreover, we introduce and study a
new notion-asymptotically K-positive definite operators.

2. Preliminaries

Let E be a real normed linear space with dual E*. We denote by J
the normalized duality mapping from F to 2Z" defined by

Je={f € B*: (z, f) = llell* = [[£1*},

where (.,.) denotes the generalized duality pairing. It is well known that
if E* is strictly convex then J is single—valued and if E is uniformly
smooth (equivalently if F* is uniformly convex) then J is uniformly
continuous on bounded subsets of £ . We shall denote the single-valued
duality mapping by j. The modulus of smoothness of E is the function
pE : [0,00) — [0,00) defined by

lz+yll+llz—yll _
2

pE(T) = sup{ 1:lz|| = 1,]|yl| = T} .

E is said to be uniformly smooth if lim,_ ¢+ ”ET(T) =0.

LEMMA 2.1. (see, e.g., [14]) Let E be a real uniformly smooth Banach
space and let J be the normalized duality map on E. Then for any given
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z,y € E, the following inequality holds:
llz +ylI* < llzl* + 2(y, j(2)) + max{||ell, LHIyllb(|lyl]), Vi(z) € J(z),

where b is a continuous nondecreasing function satisfying the conditions:
b(0) = 0, b(ct) < ¢b(t),VYe > 1, where b is a continuous nondecreasing
function satisfying the conditions: b(0) = 0, b(ct) < cb(t),Ve > 1.

3. Main results

Now, we state the inverse function theorem and sketch its proof.
We derive from the proof of the theorem that the iteration scheme in
Theorem 2 of [8] converges to the unique solution of Az = f in an
arbitrary real Banach space, provided ||f — Azol| is sufficiently small.

THEOREM 3.1. (The inverse function Theorem) Suppose X, Y are
Banach spaces and A : X — Y is such that A has uniformly continuous
Fréchet derivatives in a neighborhood of some point o of X. Then
if A'(z9) is a linear homeomorphism of X onto Y, then A is a local

homeomorphism of a neighborhood U(zg) of o to a neighborhood of
A($0)

Proof. Let A(zg) = yo. We first determine p so that A(zg+ p) =y
provided ||y — yol| is sufficiently small, or equivalently

(3.1) A(zo + p) — A(zo) = ¥ — Yo

Since A is C! at zy and A’(xg) is invertible, then (3.1) and Taylor’s
Theorem imply that A'(z¢)p + R(zo,p) = y — v, i.e.,

p = [A(z0)] (¥ — wo) — R(zo,p)),
where the remainder
R(zo, p) = A(zo + p) — A(zo) — A'(z0)p = o(]|pl])-

We show that (3.1) has one and only one solution for ||p|| sufficiently
small, by proving that the operator

Tp = [A'(z0)]"{y — yo — R(z0,p)}
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is a contraction mapping of a sphere S(0,€) in X into itself, for some €
sufficiently small. For any pj, p2 € S(0,€),

A'(zo)(Tp2 — Tp1)
R(z0, p1) — R(20, p2)
= A(zo + p1) — Amo + p2) — A'(x0)(p1 — p2)

1
= /O {A'(zo +tpr + (1 = t)p2) — A'(z0)}(p1 — p2)dt.
Hence

(3.2) ||Tp2—Tpill
< / [[A' (o) M I[| A (zo + to1 + (1 — t)p2) — A'(z0)|l[|o1 — p2lldt.

Since A is a C! mapping, the middle term of the last integral can be
made arbitrarily small by choosing ||p1||, ||e2|| sufficiently small; and
hence for some constant 0 < « < 1 (and independent of y — yg) and
sufficiently small € > 0, ||Tps—Tp1|| < a||p2—p1|] for all p1, p2 € S(0, €).
Furthermore, T maps S(0,¢€) into itself. For, ||Tp|| = ||Tp — T(0)}| +
ITO)]] < ol o]l + TO)] and [ITO)]] = [[[4"(z0)] " (y —30)ll < (1~ a)e
provided ||y — wol|| < (1 — @)e||[A/(x0)]7||~}. Hence T is a contraction
map of S(0,¢) into itself. By the contraction mapping theorem, T has
a unique fixed point p* in S(0,d) where 6 < € is chosen so small that
A(S(0,8) C S(yo, (1 — a)el|[4'(z0)]7||~1). Reversing the steps in the
argument, one finds that A(zg + p) = y has one and only one solution
when |ly — yo|| and ||p|| are sufficiently. small. Also, A7(y) = =z is
a well-defined and continuous mapping from a sphere S(yg,7n) in Y to
X. dJ

COROLLARY 3.2. Under the conditions of Theorem 3.1, the iteration
sequence

Tntl = Tn + [A/(CEO)]_le rn = [y — A(zn)];

converges to the unique solution of A(x) =y in U(zo).

Proof. Since the operator T in the proof of Theorem 3.1 is a contrac-
tion map, the sequence p, = T pn-1 converges to the unique fixed point
of T. From Theorem 3.1, for ||y — A(zo)|| sufficiently small, A(z) =y
has a unique solution x = zg + p*, where p* is the limit of the sequence
p0 = 0, pny1 = Tpn. It then follows that the sequence z, = zg + pn
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converges to zg + p*, the unique solution of A(z) =y in U(zp). Now,
Tn=20+pn = To+Tpn-
= o+ [A'(z0)] [y — Alzo)] — R(z0, pn—1)]
= 2o+ [A'(z0)] [y + A'(z0)pn—1 — A0 + pn-1)]
= 20+ pa-1 + [A'(20)] 'y — A(zn-1)]
= zp-1 + [A(z0)] 7y — A(zaa)-
' a

Henceforth, an operator A defined on a dense domain D(A) of a real
Banach space will be called K-positive definite if A is Fréchet differ-
entiable and there exist a continuously D(A)—invertible closed linear
operator K with D(A) C D(K), and a constant ¢ > 0 such that for
j € J(Ku), we have

(Au,7) > ||Kull?,  we D(A).

COROLLARY 3.3. Suppose A is a Kpd operator defined on a dense
domain D(A) of a real Banach space, X with range R(T) in X. If for
some xg € X, A'(xp) is a linear homeomorphism of X onto Y, then A is a
linear homeomorphism of a neighborhood U (zg) of zg to a neighborhood
of A(zg). Furthermore, if ||y — A(=)|| is sufficiently small, the sequence
Tp+1 = Tn + K7y, where r, = [y — A(zy)] converges to the unique
solution of A(z) =y in U(zy).

Proof. A'(x¢) satisfies the condition for K in the definition of a Kpd
operator. Hence setting K = A’(z¢) in Theorem 3.1, we are done. [

REMARK 3.4. If X is a separable Banach space, with a strictly convez
dual and the operator A is linear, a global existence result was obtained
in the domain of A, D(A) in Theorem 1 of [8].

REMARK 3.5. The iteration scheme {z,} in Corollary 3.3 above cor-
responds to the one of Theorem 2 in [8] by setting t, = 1. In Theorem 2
of [8], the scheme x, 41 = T, + t, K ! converges globally to the unique
solution of A(z) =y in Lp (or lp), p > 2, while in Corollary 3.2 above
the corresponding scheme converges locally to the unique solution of
A(z) = y in some neighborhood of a point xg in a real Banach space X.
Furthermore, under this setting, the operator A need not be linear but
Fréchet differentiable.

By writing our iteration scheme in the form of Theorem CO [10],
we prove the following Theorem for asymptotically K-positive definite
operators in a uniformly convex Banach space.
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THEOREM 3.6. Suppose X is a real uniformly smooth Banach space.
Suppose A is an asymptotically K-positive definite operator defined in
a neighborhood U(zp) of a real uniformly smooth Banach space, X.
Define the sequence {z,} by zo € U(zg), Tnt1 = Tn +7n, n > 0,
tn = K~y — KYA(z,), y € R(A). Then {x,} converges strongly to
the unique solution of A(z) =y € U(xzg).

Proof. By the linearity of K we obtain Kr,4+1 = Kr, — Ar,. Using
Lemma 2.1 and Definition 1.1, we obtain the following estimates:

|K " 7412

< ||K™ry — KAy

< [[KM |2 = 2(K™ 7 A, (K n))
(3.3) + max{||K"ry||, 1} K™ Ary|[b(|| K™~ Arp]])
||Kn7'n||2 - 2Ckn||Kn7"n”2
+ max{|| K"y, LK™ Ary||b(|| K™ Ary])
< K™l ? = 2ckn || K |2

+ (1K™ 7| + D[ K™ Arp|[b(|| K™ Arp)).

Since A is Fréchet differentiable and by the properties of the func-
tion b, the quantity ||K™ 1 Ar,||b(|| K™ "1 Ary||) can be made as small as
possible in a small neighborhood U(xzg) of X. Infact there exists ¢ such
that

(3-4) K Ara|[b(/| K" Arall) < chnl[ K ]|,

Inequality (3.4) implies that the sequence ||K"r,||S2, is monotone de-
creasing and hence converges to some real number 8 > 0. Inequalities
(3.3) and (3.4) imply that

lim ||[K™ry|| = 0.
n—oo

IA

Since K is continuously D(A)—invertible, this implies that 7, — 0.
Since A has a bounded inverse, this implies z,, — A~ly, the unique
solution of Az =y in U(zy). O

References

[1] H. Brézis and F. E. Browder, Ezistence theorems for nonlinear integral equations
of Hammerstein type, Bull. Amer. Math. Soc. 81 (1975), no. 1, 73-78.

[2] , Some new results about Hammerstein equations, Bull. Amer. Math. Soc.
80 (1974), no. 3, 567-572.

[3] F. E. Browder, Functional Analysis and partial differential equations, Math. Ann.
138 (1959), 55-79.




4]

A local approximation method 611

F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear
mappings in Hilbert spaces, J. Math. Anal. Appl. 20 (1967), 197-228.

R. E. Bruck, T. Kuczumow and S. Reich, Convergence of iterates of asymptoti-
cally nonexpansive mappings in Banach spaces with the uniform Opial property,
Collog. Math. 65 (1993), no. 2, 169-179.

C. E. Chidume, An approzimation method for monotone Lipschitzian operators
in Hilbert spaces, J. Austral. Math. Soc. Ser. A 41 (1986), 59-63.

, Tterative approzimation of fized points of Lipschitz strictly pseudocon-
tractive mappings, Proc. Amer. Math. Soc. 99 (1987), no. 2, 283-288.

C. E. Chidume and S. J. Aneke, Existence, Uniqueness and Approzimation of
a Solution for a K-Positive Definite Operator Equation, Appl. Anal. 50 (1993),
no. 3-4, 285-294.

C. E. Chidume, S. J. Aneke and H. Zegeye, Approzimations of Fized Points of
Weakly Contractive Non-self Maps in Banach spaces, J. Math. Anal. Appl. (in
press).

C. E. Chidume and M. O. Osilike, Approxzimation of a Solution for a K-Positive
Definite Operator Equation, J. Math. Anal. Appl. 210 (1997), 1-7.

K. Goebel and W. A. Kirk, A fized point theorem for asymptotically nonexpansive
mappings, Proc. Amer. Math. Soc. 35 (1972), no. 1, 171-174.

W. M. Patterson, lterative methods for the solution of a linear operator equation
in Hilbert space—A survey, Springer-Verlag Lecture Notes in Mathematics, No.
394 (1974).

W. V. Petryshyn, Direct and Iterative methods for the solution of linear operator
equations in Hilbert spaces, Trans. Amer. Math. Soc. 105 (1962), 136-175.

S. Reich, An iterative procedure for constructing zeros of accretive sets in Banach
spaces, Nonlinear Anal. 2 (1978), 85-92.

T. Reid, Symmetrizable completely continuous linear transformations in Hilbert
space, Duke Math. J. 18 (1951), 41-56.

J. Schu, Iterative construction of fized points of asymptotically nonerpansive map-
pings, J. Math. Anal. Appl. 158 (1991), 407-413. ‘

Z. B. Xu and G. F. Roach, Characteristic inequalities for uniforly convexr and
uniformly smooth Banach spaces, J. Math. Anal. Appl. 157 (1991), no. 1, 189-
210.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NIGERIA, NSUKKA, NIGERIA
E-mail: chidume®@ictp.trieste.it

anekes@ictp.trieste.it



