• Title/Summary/Keyword: Porous core

Search Result 161, Processing Time 0.025 seconds

Scale Effects of Stability Parameters in the Hydraulic Model Tests of Rubble Mound Coastal Structures (사석구조물(捨石構造物)의 안정성(安定性)에 관한 수리모형(水理模型)의 축척효과(縮尺効果))

  • Ryu, Cheong Ro
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.111-119
    • /
    • 1987
  • Scale effects of stability, run-up, run-down and reflection of layered coastal structures are investigated through the experiments with 7 kinds of hydraulic scale models. The occurrence mechanism and the control method of scale effects are also discussed. As a result, it is found that the similarity of permeability of inner layers plays an important role in the occurrence of scale effects, which has been neglected in the most of conventional model tests. To assure the best scale effects for permeable coastal structures, control of Reynolds numbers of the porous media flow in each layer is recommended. It is also found that Reynolds numbers in revetment, filter, and core layer must be greater than $2{\times}10^4$, $3{\times}10^3$, and $1{\times}10^3$, respectively.

  • PDF

The developments of heavy hydrocarbon reformer for SOFC

  • Bae, Jung-Myeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.58.2-58.2
    • /
    • 2012
  • Heavy hydrocarbon reforming is a core technology for "Dirty energy smart". Heavy hydrocarbons are components of fossil fuels, biomass, coke oven gas and etc. Heavy hydrocarbon reforming converts the fuels into $H_2$-rich syngas. And then $H_2$-rich syngas is used for the production of electricity, synthetic fuels and petrochemicals. Energy can be used efficiently and obtained from various sources by using $H_2$-rich syngas from heavy hydrocarbon reforming. Especially, the key point of "Dirty energy smart" is using "dirty fuel" which is wasted in an inefficient way. New energy conversion laboratory of KAIST has been researched diesel reforming for solid oxide fuel cell (SOFC) as a part of "Dirty energy smart". Diesel is heavy hydrocarbon fuels which has higher carbon number than natural gas, kerosene and gasoline. Diesel reforming has difficulties due to the evaporation of fuels and coke formation. Nevertheless, diesel reforming technology is directly applied to "Dirty fuel" because diesel has the similar chemical properties with "Dirty fuel". On the other hand, SOFC has advantages on high efficiency and wasted heat recovery. Nippon oil Co. of Japan recently commercializes 700We class SOFC system using city gas. Considering the market situation, the development of diesel reformer has a great ripple effect. SOFC system can be applied to auxiliary power unit and distributed power generation. In addition, "Dirty energy smart" can be realized by applying diesel reforming technology to "Dirty fuel". As well as material developments, multidirectional approaches are required to reform heavy hydrocarbon fuels and use $H_2$-rich gas in SOFC. Gd doped ceria (CGO, $Ce_{1-x}Gd_xO_{2-y}$) has been researched for not only electrolyte materials but also catalysts supports. In addition, catalysts infiltrated electrode over porous $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_3-{\delta}$ and catalyst deposition at three phase boundary are being investigated to improve the performance of SOFC. On the other hand, nozzle for diesel atomization and post-reforming for light-hydrocarbons removal are examples of solving material problems in multidirectional approaches. Likewise, multidirectional approaches are necessary to realize "Dirty energy smart" like reforming "Dirty fuel" for SOFC.

  • PDF

Ultralow-n SiO2 Thin Films Synthesized Using Organic Nanoparticles Template

  • Dung, Mai Xuan;Lee, June-Key;Soun, Woo-Sik;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3593-3599
    • /
    • 2010
  • In an original effort, this lab attempted to employ polystyrene nanoparticles as a template for the synthesis of ordered and highly porous macroporous $SiO_2$ thin films, utilizing their high combustion temperature and narrow size distribution. However, polystyrene nanoparticle thin films were not obtained due to the low interaction between individual particles and between the particle and silicon substrate. However, polystyrene-polyacrylic acid (PS-AA) colloidal particles of a core-shell structure were synthesized by a one-pot miniemulsion polymerization approach, with hydrophilic polyacrylic acid tails on the particle surface that improved interaction between individual particles and between the particle and silicon substrate. The PS-AA thin films were spin-coated in the thickness ranges from monolayer to approximately $1.0\;{\mu}m$. Using the PS-AA thin films as sacrificial templates, macroporous $SiO_2$ thin films were successfully synthesized by vapor deposition or conventional solution sol-gel infiltration methods. Inspection with field emission scanning electron microscopy (FE-SEM) showed that the macroporous $SiO_2$ thin films consist of interconnected air balls (~100 nm). Typical macroporous $SiO_2$ thin films showed ultralow refractive indices ranging from 1.098 to 1.138 at 633 nm, according to the infiltration conditions, which were confirmed by spectroscopy ellipsometry (SE) measurements. This research shows how the synthetic control of the macromolecule such as hydrophilic polystyrene nanopaticles and silicate sol precursors innovates the optical properties and processabilities for actual applications.

Vibration behavior of functionally graded sandwich beam with porous core and nanocomposite layers

  • Si, Hua;Shen, Daoming;Xia, Jinhong;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.36 no.1
    • /
    • pp.1-16
    • /
    • 2020
  • In steel-concrete composite beams, to improve the cracking resistance of the concrete slab in the hogging moment region, a new type of connector in the interface, named uplift-restricted and slip-permitted screw-type (URSP-S) connector has been proposed. This paper focuses on the behavior of steel-concrete composite beams with URSP-S connectors. A total of three beam specimens including a simply supported beam with URSP-S connectors and two continuous composite beams with different connectors arrangements were designed and tested. More specifically, one continuous composite beam was equipped with URSP-S connectors in negative moment region and traditional shear studs in other regions. For comparison, the other one was designed with only traditional shear studs. The failure modes, crack evolution process, ultimate capacities, strain responses at different locations as well as the interface slip of the three tested specimens were measured and evaluated in-depth. Based on the experimental study, the research findings indicate that the larger slip deformation is allowed while using URSP-S connectors. Meanwhile, the tensile stress reduces and the cracking resistance of the concrete slab improves accordingly. In addition, the overall stiffness and strength of the composite beam become slightly lower than those of the composite beam using traditional shear studs. Moreover, the arrangement suggestion of URSP-S connectors in the composite beam is discussed in this paper for its practical design and application.

Preparation and Thermal Degradation Behavior of WO3-TiO2 Catalyst for Selective Catalytic Reduction of NOx (NOx 제거용 WO3-TiO2 계 SCR 촉매 제조 및 열적열화거동연구)

  • Shin, Byeongkil;Kim, Janghoon;Yoon, Sanghyeon;Lee, Heesoo;Shin, Dongwoo;Min, Whasik
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.596-600
    • /
    • 2011
  • Thermal degradation behavior of a $WO_3-TiO_2$ monolithic catalyst was investigated in terms of structural, morphological, and physico-chemical analyses. The catalyst with 4 wt.% $WO_3$ contents were prepared by a wet-impregnation method, and a durability test of the catalysts were performed in a temperature range between $400^{\circ}C$ and $800^{\circ}C$ for 3 h. An increase of thermal stress decreased the specific surface area, which was caused by grain growth and agglomeration of the catalyst particles. The phase transition from anatase to rutile occurred at around $800^{\circ}C$ and a decrease in the Brønsted acid sites was confirmed by structural analysis and physico-chemical analysis. A change in Brønsted acidity can affect to the catalytic efficiency; therefore, the thermal degradation behavior of the $WO_3-TiO_2$ catalyst could be explained by the transition to a stable rutile phase of $TiO_2$ and the decrease of specific surface area in the SCR catalyst.

A Study on Flame Retardant Treatment on Bamboo Nonwoven Fabric and Manufacturing of Sandwich Structure Composites (대나무 섬유의 난연화 및 샌드위치 구조 복합재료 제조연구)

  • Lee, Dong-Woo;Prabhakar, M.N.;Song, Jung-Il
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.408-414
    • /
    • 2020
  • The present engineering sector focused on the sandwich composites and almost covered all engineering fields because of decent mechanical properties with a lightweight structure. It mainly consists of high strength fiber skin and porous structure core like corrugated, honeycomb, balsa wood, and foams which is playing a pivotal role in weight reduction. Recently researchers attention grabbed by Natural fiber sandwich composites due to biodegradability, renewable, low-cost, and environmentally friendly. However special focus is highly needed towards the flammability behavior of natural fibers used as reinforcement for composites. Herein, for the first time, the flame retardant natural fiber sandwich composite was fabricated by using flame retardant treated bamboo fabric and vinyl ester via the VARTM process. The impact of flame retardant treated bamboo fabric on mechanical and flame retardant properties were studied. The results concluded that the fabricated bamboo sandwich composites show structurally lightweight with significant mechanical strength and feasibility with respect to the flame.

Buckling behaviors of FG porous sandwich plates with metallic foam cores resting on elastic foundation

  • Abdelkader, Tamrabet;Belgacem, Mamen;Abderrahmane, Menasria;Abdelhakim, Bouhadra;Abdelouahed, Tounsi;Mofareh Hassan, Ghazwani;Ali, Alnujaie;S.R., Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.289-304
    • /
    • 2023
  • The main objective of this paper is to study the effect of porosity on the buckling behavior of thick functionally graded sandwich plate resting on various boundary conditions under different in-plane loads. The formulation is made for a newly developed sandwich plate using a functional gradient material based on a modified power law function of symmetric and asymmetric configuration. Four different porosity distribution are considered and varied in accordance with material propriety variation in the thickness direction of the face sheets of sandwich plate, metal foam also is considered in this study on the second model of sandwich which containing metal foam core and FGM face sheets. New quasi-3D high shear deformation theory is used here for this investigate; the present kinematic model introduces only six variables with stretching effect by adopting a new indeterminate integral variable in the displacement field. The stability equations are obtained by Hamilton's principle then solved by generalized solution. The effect of Pasternak and Winkler elastic foundations also including here. the present model validated with those found in the open literature, then the impact of different parameters: porosities index, foam cells distribution, boundary conditions, elastic foundation, power law index, ratio aspect, side-to-thickness ratio and different in-plane axial loads on the variation of the buckling behavior are demonstrated.

Preparation of Monodispersed Silica-Rubitherm®Microparticles Using Membrane Emulsification and Their Latent Heat Properties (막유화법을 이용한 단분산성 실리카-루비덤® 마이크로 입자의 제조 및 잠열 특성)

  • Kim, Soo-Yeon;Jung, Yeon-Seok;Lee, Sun-Ho;You, Jin-Oh;Youm, Kyung-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.215-225
    • /
    • 2015
  • Recently, the importance of energy saving and alternative energy is significantly increasing due to energy depletion and the phase change material (PCM) research for saving energy is also actively investigating. In this research, the membrane emulsification using SPG membrane was used to make various microencapsulated phase change material (MPCM) particles which were comprised of $Rubitherms^{(R)}$ (RT-21 and RT-24) core and silica coating. We investigated the pressure of the dispersion phase, the concentration of surfactant, and the ratio of $Rubitherm^{(R)}$ and silica to prepare various MPCM particles. The DSC and TGA were used to examine the heat stability and latent heat properties. Also, PSA, SEM, and optical microscopy were used to confirm the size of $Rubitherm^{(R)}$ particles and the thickness of silica shell. The average of particle size was $7-8{\mu}m$. And, FT-IR was also used to enforce the qualitative analysis. Finally, the MPCM particles obtained from membrane emulsification showed monodispersed size distribution and the heat stability and latent heat were kept up to 80% compared to pure $Rubitherm^{(R)}$. So, it can be effectively used for wallpaper, buildings and interior products for energy saving as PCMs.

Deterioration of granite in Bunhwangsaseoktap (Stone pagoda of Bunhwnagsa Temple) (분황사석탑 구성 화강암의 훼손현상)

  • Do, Jinyoung
    • Journal of Conservation Science
    • /
    • v.17 s.17
    • /
    • pp.73-82
    • /
    • 2005
  • The Bunhwangsaseoktop is the oldest stone brick pagoda in Silla Period. The pagoda body is made by piling small brick-shaped stones trimmed from black andesite and the first-story core has a shrine, which is made by granite. In 1915 it was repaired on a large scale, but now is severely damaged. Many kind of the stone decay like flaking, granular disintegration have occurred especially on the granite surface of the pagoda. In this study have been investigated the stone decay type and its cause in relation to efflorescence on the body part. Various analysis show that the deterioration on the granite is due to the same materials that lead to efflorescence on the body stone surface. The soluble salt like sodium nitrate, calcium sulfate and sodium sulfate come from white joint mortar. This salt solution is recrystallized in the outside of the pagoda, but most of them flow down with rain. In This process the porous granite absorbes the dissolved salts with moisture into the inside by capillary action. In order to reduce this problem, therefore, white joint moral is changed with other less soluble materials. And it is necessary to take steps to prevent water from seep into the inside of the stone, because this water dissolves the white joint mortar.

  • PDF

Shear Experiment and Simulation Analysis at Bonded Surface of Specimen Tapered Double Cantilever Beam with Expanded Aluminum (발포 알루미늄으로 된 경사진 이중외팔보 시험편의 접착면에서의 전단 실험 및 시뮬레이션 해석)

  • Sun, Hong-Peng;Cheon, Seong S.;Cho, Jae-Ung
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.248-253
    • /
    • 2014
  • In this study, tapered double cantilever beam specimens are designed with the variable of angle to investigate the fracture property at the bonded surface of adjoint structure. These specimens are made with four kinds of models as the length of 200 mm and the slanted angles of bonded surfaces on specimens of $6^{\circ}$, $8^{\circ}$, $10^{\circ}$ and $12^{\circ}$. By investigating experiment and analysis result of these specimens, the maximum loads are happened at 120 N, 137 N, 154 N and 171 N respectively in cases of the specimens with slanted angles of $6^{\circ}$, $8^{\circ}$, $10^{\circ}$ and $12^{\circ}$. As the analysis result approach the experimental value, it is confirmed to have no much difference with the values of experiment and analysis. It is thought that the material property can be investigated effectively on shear behavior of the material composed of aluminum foam bonded with adhesive through simulation instead of experiment by applying this study method.