Browse > Article
http://dx.doi.org/10.12989/scs.2020.36.1.001

Vibration behavior of functionally graded sandwich beam with porous core and nanocomposite layers  

Si, Hua (School of Civil Engineering & Architecture, Xinxiang university)
Shen, Daoming (School of Civil Engineering & Architecture, Xinxiang university)
Xia, Jinhong (School of Civil Engineering & Architecture, Xinxiang university)
Tahouneh, Vahid (Young Researchers and Elite Club, Islamshahr Branch, Islamic Azad University)
Publication Information
Steel and Composite Structures / v.36, no.1, 2020 , pp. 1-16 More about this Journal
Abstract
In steel-concrete composite beams, to improve the cracking resistance of the concrete slab in the hogging moment region, a new type of connector in the interface, named uplift-restricted and slip-permitted screw-type (URSP-S) connector has been proposed. This paper focuses on the behavior of steel-concrete composite beams with URSP-S connectors. A total of three beam specimens including a simply supported beam with URSP-S connectors and two continuous composite beams with different connectors arrangements were designed and tested. More specifically, one continuous composite beam was equipped with URSP-S connectors in negative moment region and traditional shear studs in other regions. For comparison, the other one was designed with only traditional shear studs. The failure modes, crack evolution process, ultimate capacities, strain responses at different locations as well as the interface slip of the three tested specimens were measured and evaluated in-depth. Based on the experimental study, the research findings indicate that the larger slip deformation is allowed while using URSP-S connectors. Meanwhile, the tensile stress reduces and the cracking resistance of the concrete slab improves accordingly. In addition, the overall stiffness and strength of the composite beam become slightly lower than those of the composite beam using traditional shear studs. Moreover, the arrangement suggestion of URSP-S connectors in the composite beam is discussed in this paper for its practical design and application.
Keywords
steel-concrete composite beam; uplift-restricted and slip-permitted screw-type (URSP-S) connector; experimental study; cracking resistance; interface slip;
Citations & Related Records
Times Cited By KSCI : 36  (Citation Analysis)
연도 인용수 순위
1 Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), "A new higherorder shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521.   DOI
2 Bert, C.W. and Malik, M. (1996), "Differential quadrature method in computational mechanics: a review", Appl. Mech. Rev., 49, 1-27. https://doi.org/10.1115/1.3101882.   DOI
3 Bouchafa, A., Bouiadjra, M.B., Houari, M.S.A. and Tounsi, A. (2015), "Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory", Steel Compos. Struct., 18(6), 1493-1515. https://doi.org/10.12989/scs.2015.18.6.1493.   DOI
4 Celep, Z. (1980), "Stability of a beam on an elastic foundation subjected to a nonconservative load", J. Appl. Mech., 47(1), 116-120. https://doi.org/10.1115/1.3153587.   DOI
5 Moradi-Dastjerdi, R., Foroutan, M. and Pourasghar, A. (2013), "Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method", Mater. Des., 44, 256-266.   DOI
6 Park, W.T., Han, S.C., Jung, W.Y. and Lee, W.H. (2016), "Dynamic instability analysis for S-FGM plates embedded in Pasternak elastic medium using the modified couple stress theory", Steel Compos. Struct., 22(6), 1239-1259. https://doi.org/10.12989/scs.2016.22.6.1239.   DOI
7 Arioui, O., Belakhdar, K., Kaci, A. and Tounsi, A. (2018), "Thermal buckling of FGM beams having parabolic thickness variation and temperature dependent materials", Steel Compos. Struct., 27(6), 777-788. https://doi.org/10.12989/scs.2018.27.6.777.   DOI
8 Bambaeechee, M. (2019), "Free vibration of AFG beams with elastic end restraints", Steel Compos. Struct., 33(3), 403-432. https://doi.org/10.12989/scs.2019.33.3.403.   DOI
9 Nguyen, D.K. and Tran, T.T. (2018), "Free vibration of tapered BFGM beams using an efficient shear deformable finite element model", Steel Compos. Struct., 29(3), 363-377. https://doi.org/10.12989/scs.2018.29.3.363.   DOI
10 Nguyen, X.H., Le, D.D. and Nguyen, Q.H. (2019), "Static behavior of novel RCS through-column-type joint: Experimental and numerical study", Steel Compos. Struct., 32(1), 111-126. https://doi.org/10.12989/scs.2019.32.1.111.   DOI
11 Leissa, A.W., McGee, O.G. and Huang, C.S. (1993), "Vibrations of sectorial plates having corner stress singularities", J. Appl. Mech. Transactions of the ASME, 60(1), 134-140. https://doi.org/10.1115/1.2900735.   DOI
12 Liu, R. and Wang, L. (2015), "Thermal vibration of a singlewalled carbon nanotube predicted by semiquantum molecular dynamics", Physical Chemistry Chemical Physics, 7. https://doi.org/10.1039/C4CP05495D.
13 Li, X., Zhou, X., Liu J. and Wang, X. (2019), "Shear behavior of short square tubed steel reinforced concrete columns with highstrength concrete", Steel Compos. Struct., 32(3), 411-422. https://doi.org/10.12989/scs.2019.32.3.411.   DOI
14 Mahmoud, A.A., Awadalla, R. and Nassar, N.M. (2011), "Free vibration of non-uniform column using DQM", Mech. Res. Commun., 38, 443-448. https://doi.org/10.1016/j.mechrescom.2011.05.015.   DOI
15 Marin, M. (2010), "Lagrange identity method for microstretch thermoelastic materials", J. Math. Anal. Appl., 363(1), 275-286'. https://doi.org/10.1016/j.jmaa.2009.08.045.   DOI
16 Marin, M., Craciun, E.M. and Pop, N. (2016), "Considerations on mixed initial boundary value problems for micropolar porous bodies", Dyn. Syst. Appl., 25(1), 175-195.
17 Marin, M., Agarwal, R.P. and Mahmoud, S.R. (2013), "Nonsimple material problems addressed by the Lagrange's identity", Bound. Value Probl, 2013(1-14). https://doi.org/10.1186/1687-2770-2013-135.
18 Marin, M. and Nicaise, S. (2016), "Existence and stability results for thermoelastic dipolar bodies with double porosity", Continuum Mech. Thermodyn., 28(6), 1645-1657. https://doi.org/10.1007/s00161-016-0503-4.   DOI
19 Marin, M., Ellahi, R. and Adina, C. (2017), "On solutions of Saint-Venant's problem for elastic dipolar bodies with voids", Carpathian J. Math., 33(2), 219-232.   DOI
20 Barka, M., Benrahou, K.H., Bakora, A. and Tounsi, A. (2016), "Thermal post-buckling behavior of imperfect temperaturedependent sandwich FGM plates resting on Pasternak elastic foundation", Steel Compos. Struct., 22(1), 91-112. https://doi.org/10.12989/scs.2016.22.1.091.   DOI
21 Zhu, X.H. and Meng, Z.Y. (1995), "Operational principle fabrication and displacement characteristics of a functionally gradient piezoelectricceramic actuator", Sens. Actuators, 48(3), 169-176. https://doi.org/10.1016/0924-4247(95)00996-5.   DOI
22 Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2019), "Refined shear deformation theories for laminated composite arches and beams with variable thickness: Natural frequency analysis", Eng. Anal. Bound. Elem., 100, 24-47. https://doi.org/10.1016/j.enganabound.2017.07.029.   DOI
23 Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017), "Foam core composite sandwich plates and shells with variable stiffness: Effect of the curvilinear fiber path on the modal response", J. Sandw. Struct. Mater., 21(1), 320-365. https://doi.org/10.1177/1099636217693623.
24 Wagner, H.D., Lourie, O. and Feldman, Y. (1997), "Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix", Appl. Phys. Lett., 72(2), 188-190. https://doi.org/10.1063/1.120680.   DOI
25 Wang, X. and Bert, C.W. (1993), "A new approach in applying differential quadrature to static and free vibrational analysis of beam and plates", J. Sound Vib., 162(3), 566-572. https://doi.org/10.1006/jsvi.1993.1143.   DOI
26 Hauger, W. and Vetter, K. (1976), "Influence of an elastic foundation on the stability of a tangentially loaded column", J. Sound Vib., 47(2), 296-299. https://doi.org/10.1016/10.1016/0022-460x(76)90726-4.   DOI
27 Finot, M. and Suresh, S. (1996), "Small and large deformation of thick and thin-film multilayers: effect of layer geometry, plasticity and compositional gradients", J. Mech. Phys. Solids, 44(5), 683-721. https://doi.org/10.1016/0022-5096(96)84548-0.   DOI
28 Hadji, L., Daouadji, T.H., Tounsi, A. and Bedia, E.A. (2014), "A higher order shear deformation theory for static and free vibration of FGM beam", Steel Compos. Struct., 16(5), 507-519. https://doi.org/10.12989/scs.2014.16.5.507.   DOI
29 Halpin, J.C. and Tsai, S.W. (1969), "Effects of environmental factors on composite materials", AFML-TR-67-423.
30 Karami, G., Malekzadeh, P. and Shahpari, S. (2003), "A DQEM for vibration of deformable non-uniform beams with general boundary conditions", Eng. Struct., 25, 1169-1178. https://doi.org/10.1016/S0141-0296(03)00065-8.   DOI
31 Marin, M. (2010), "Some estimates on vibrations in thermoelasticity of dipolar bodies", J. Vib. Control, 16(1), 33-47. https://doi.org/10.1177/1077546309103419.   DOI
32 Shen H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19.   DOI
33 Zhang, Y. and Wang, L. (2018), "Thermally stimulated nonlinear vibration of rectangular single-layered black phosphorus", J. Appl. Phys., 124(13), 10.1063/1.5047584. https://doi.org/10.1063/1.5047584.
34 Sharma, A., Sharda, H.B. and Nath, Y. (2005b), "Stability and vibration of thick laminated composite sector plates", J. Sound Vib., 287(1-2), 1-23. https://doi.org/10.1016/j.jsv.2004.10.030.   DOI
35 Shafiei, H. and Setoodeh, A.R. (2017), "Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation", Steel Compos. Struct., 24(1), 65-77. https://doi.org/10.12989/scs.2017.24.1.065.   DOI
36 Shen, H.S. and Zhang, C.L. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotubereinforced composite plates", Mater. Des., 31(7), 3403-3411.   DOI
37 Shu, C. and Du, H. (1997a), "Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beams and plates", Int. J. Solids. Struct., 34, 819-835. https://doi.org/10.1016/S0020-7683(96)00057-1.   DOI
38 Shu, C. and Du, H. (1997b), "A generalized approach for implementing general boundary conditions in the GDQ free vibration analysis of plates", Int. J. Solids. Struct., 34, 837-846. https://doi.org/10.1016/S0020-7683(96)00056-X.   DOI
39 Smith, T.E. and Herrmann, G. (1972), "Stability of a beam on an elastic foundation subjected to a follower force", J. Appl. Mech., 39, 628-629. https://doi.org/10.1115/1.3422743.   DOI
40 Shu, C. (2000), "Differential Quadrature and Its Application in Engineering", Springer, Berlin.
41 Montazeri, A., Javadpour, J., Khavandi, A., Tcharkhtchi, A. and Mohajeri, A. (2010), "Mechanical properties of multi-walled carbon nanotube/epoxy composites", Mater. Des., 31, 4202-4208. https://doi.org/10.1016/j.matdes.2010.04.018.   DOI
42 Pelletier Jacob, L. and Vel Senthil,S. (2006), "An exact solution for the steady state thermo elastic response of functionally graded orthotropic cylindrical shells", Int. J. Solid Struct., 43, 1131-1158. https://doi.org/10.1016/j.ijsolstr.2005.03.079.   DOI
43 Quan, J.R. and Chan, C.T. (1989), "New insights in solving distributed system equation by the quadrature methods", Comput. Chem. Eng., 13, 779-788. https://doi.org/10.1016/0098-1354(89)85051-3.   DOI
44 Sharma, A., Sharda, H.B. and Nath, Y. (2005a), "Stability and vibration of Mindlin sector plates: an analytical approach", AIAA J., 43(5), 1109-1116. https://doi.org/10.2514/1.4683.   DOI
45 Chen, C.S., Liu, F.H. and Chen, W.R. (2017), "vibration and stability of initially stressed sandwich plates with FGM face sheets in thermal environments", Steel Compos. Struct., 23(3), 251-261. https://doi.org/10.12989/scs.2017.23.3.251.   DOI
46 Du, H., Liew, K.M. and Lim, M.K. (1996), "Generalized differential quadrature method for buckling analysis", J. Eng. Mech., 122(2), 95-100. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:2.   DOI
47 Martone, A., Faiella, G., Antonucci, V., Giordano, M. and Zarrelli, M. (2011), "The effect of the aspect ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix", Compos. Sci. Technol., 71(8), 1117-1123. https://doi.org/10.1016/j.compscitech.2011.04.002.   DOI
48 Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A.M.S. and Kazemi, M. (2017), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415.   DOI
49 Moradi-Dastjerdi, R. and Momeni-Khabisi, H. (2016), "Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube", Steel Compos. Struct., 22(2). https://doi.org/10.12989/scs.2016.22.2.277.
50 Ebrahimi, S., Zahrai, S.M. and Mirghaderi, S.R. (2019), "Numerical study on force transfer mechanism in through gusset plates of SCBFs with HSS columns & beams", Steel Compos. Struct., 31(6), 541-558. https://doi.org/10.12989/scs.2019.31.6.541.   DOI
51 Tahouneh, V. (2017), "The effect of carbon nanotubes agglomeration on vibrational response of thick functionally graded sandwich plates", Steel Compos. Struct., 24(6), 711-726. https://doi.org/10.12989/scs.2017.24.6.711.   DOI
52 Tornabene, F., Bacciocchi, M., Fantuzzi, N. and Reddy, J.N. (2018), "Multiscale Approach for Three-Phase CNT/Polymer/Fiber Laminated Nanocomposite Structures", Polymer Composites, In Press, DOI: 10.1002/pc.24520.
53 Tornabene, F., Fantuzzi, N., Ubertini, F. and Viola, E. (2015), "Strong formulation finite element method based on differential quadrature: A survey", Appl. Mech. Rev., 67(2), 1-55. https://doi.org/10.1115/1.4028859.
54 Ahmed Houari, M.S., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.   DOI
55 Affdl Halpin, J.C. and Kardos, J.L. (1976), "The Halpin-Tsai equations: A review", Polym. Eng. Sci., 16(5), 344-352. https://doi.org/10.1002/pen.760160512.   DOI
56 Arefi, M. (2015), "Elastic solution of a curved beam made of functionally graded materials with different cross sections', Steel Compos. Struct., 18(3), 659-672. https://doi.org/10.12989/scs.2015.18.3.659.   DOI
57 Xu, W., Wang, L. and Jiang, J. (2016), "Strain gradient finite element analysis on the vibration of double-layered graphene sheets", Int. J. Comput. Method., 13(3). https://doi.org/10.1142/S0219876216500110.   DOI
58 Wang, J. and Sun, Q. (2019), "Seismic behavior of Q690 circular HCFTST columns under constant axial loading and reversed cyclic lateral loading", Steel Compos. Struct., 32(2), 199-212. https://doi.org/10.12989/scs.2019.32.2.199.   DOI
59 Wattanasakulpong, and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71 201-208.   DOI
60 Wu, C.P. and Liu, Y.C. (2016), "A state space meshless method for the 3D analysis of FGM axisymmetric circular plates", Steel Compos. Struct., 22(1), 161-182. https://doi.org/10.12989/scs.2016.22.1.161.   DOI
61 Yaghoobi, H., Valipour, M.S., Fereidoon, A. and Khoshnevisrad, P. (2014), "Analytical study on post-buckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic foundation under thermo-mechanical loadings using VIM", Steel Compos. Struct., 17(5), 753-776. https://doi.org/10.12989/scs.2014.17.5.753.   DOI
62 Yas, M. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Pressure Vessel. Piping, 98, 119-128.   DOI
63 Yeh, M.K., Tai, N.H. and Liu, J.H. (2006), "Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes", Carbon, 44(1), 1-9. https://doi.org/10.1016/j.carbon.2005.07.005.   DOI
64 Yusheng, F. and Bert, C.W. (1992), "Application of quadrature method to flexural vibration analysis of a geometrically nonlinear beam", J. Nonlinear Dynam., 3, 13-18.   DOI
65 Lai, B., Richard, J.Y. and Xiong, M. (2019), "Experimental and analytical investigation of composite columns made of high strength steel and high strength concrete", Steel Compos. Struct., 33(1), 67-79. https://doi.org/10.12989/scs.2019.33.1.067.   DOI
66 Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Design, 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.   DOI
67 Koizumi, M. (1993), "The concept of FGM", Ceram. Trans. Funct. Grad. Mater., 34, 3-10.
68 Lee, S.Y., Yang, C.C. (1994), "Nonconservative instability of nonuniform beams resting on an elastic foundation", J. Sound Vib., 169, 433-444. https://doi.org/10.1006/jsvi.1994.1027.   DOI
69 Bouguenina, O., Belakhdar, K., Tounsi, A. and Bedia, E.A.A. (2015), "Numerical analysis of FGM plates with variable thickness subjected to thermal buckling", Steel Compos. Struct., 19(3), 679-695. https://doi.org/10.12989/scs.2015.19.3.679.   DOI
70 Song, Y., Uy, B. and Wang, J. (2019), "Numerical analysis of stainless steel-concrete composite beam-to-column joints with bolted flush endplates", Steel Compos. Struct., 33(1), 143-162. https://doi.org/10.12989/scs.2019.33.1.143.   DOI
71 Sundararajan, C. (1974), "Stability of columns on elastic foundations subjected to conservative or nonconservative forces", J. Sound Vib., 37(1), 79-85. https://doi.org/10.1016/S0022-460X(74)80059-3.   DOI
72 Tahouneh, V. (2016), "Using an equivalent continuum model for 3D dynamic analysis of nanocomposite plates", Steel Compos. Struct., 20(3), 623-649. https://doi.org/10.12989/scs.2016.20.3.623.   DOI