DOI QR코드

DOI QR Code

Buckling behaviors of FG porous sandwich plates with metallic foam cores resting on elastic foundation

  • Abdelkader, Tamrabet (Department of Civil Engineering, University of Ferhat Abbas-Setif1, Faculty of Technology) ;
  • Belgacem, Mamen (Department of Civil Engineering, Faculty of Science and Technology, University of Abbes Laghrour Khenchela) ;
  • Abderrahmane, Menasria (Department of Civil Engineering, Faculty of Science and Technology, University of Abbes Laghrour Khenchela) ;
  • Abdelhakim, Bouhadra (Department of Civil Engineering, Faculty of Science and Technology, University of Abbes Laghrour Khenchela) ;
  • Abdelouahed, Tounsi (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Mofareh Hassan, Ghazwani (Department of Mechanical Engineering, Faculty of Engineering, Jazan University) ;
  • Ali, Alnujaie (Department of Mechanical Engineering, Faculty of Engineering, Jazan University) ;
  • S.R., Mahmoud (GRC Department, Jeddah Community College, King Abdulaziz University)
  • Received : 2022.09.16
  • Accepted : 2022.12.30
  • Published : 2023.02.10

Abstract

The main objective of this paper is to study the effect of porosity on the buckling behavior of thick functionally graded sandwich plate resting on various boundary conditions under different in-plane loads. The formulation is made for a newly developed sandwich plate using a functional gradient material based on a modified power law function of symmetric and asymmetric configuration. Four different porosity distribution are considered and varied in accordance with material propriety variation in the thickness direction of the face sheets of sandwich plate, metal foam also is considered in this study on the second model of sandwich which containing metal foam core and FGM face sheets. New quasi-3D high shear deformation theory is used here for this investigate; the present kinematic model introduces only six variables with stretching effect by adopting a new indeterminate integral variable in the displacement field. The stability equations are obtained by Hamilton's principle then solved by generalized solution. The effect of Pasternak and Winkler elastic foundations also including here. the present model validated with those found in the open literature, then the impact of different parameters: porosities index, foam cells distribution, boundary conditions, elastic foundation, power law index, ratio aspect, side-to-thickness ratio and different in-plane axial loads on the variation of the buckling behavior are demonstrated.

Keywords

References

  1. Adhikari, B., Dash, P. and Singh B.N. (2020), "Buckling analysis of porous FGM sandwich plates under various types nonuniform edge compression based on higher order shear deformation theory", Compos. Struct., 251, 112597. https://doi.org/10.1016/j.compstruct.2020.112597.
  2. Akbas, S.D. (2017), "Vibration and static analysis of functionally graded porous plates", J. Appl. Comput. Mech., 3(3), 199-207. https://doi.org/10.22055/jacm.2017.21540.1107.
  3. Akhavan, H., Hosseini Hashemi, S., Damavandi Taher, H.R., Alibeigloo, A. and Vahabi, S. (2009), "Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation", Part I: Buckl. Anal. Comput. Mater. Sci., 44(3), 968-978. https://doi.org/10.1016/j.commatsci.2008.07.004.
  4. Alam, M. and Mishra, S.K. (2022), "A boundary layer solution for the post-critical thermo-electro-mechanical stability of nonlocal-strain gradient Functionally Graded Piezoelectric cylindrical shells", Eur. J. Mech.-A/Solid., 97, 104836. https://doi.org/10.1016/j.euromechsol.2022.104836.
  5. Bever, M.B. and Duwez, P. (1972), "Gradients in composite materials", Mater. Sci. Eng., 10, 1-8. https://doi.org/10.1016/0025-5416(72)90059-6.
  6. Chang, X., Zhou, J. and Li ,Y. (2022), "Post-buckling characteristics of functionally graded fluid-conveying pipe with geometric defects on Pasternak foundation", Ocean Eng., 266(4), 113056. https://doi.org/10.1016/j.oceaneng.2022.113056.
  7. Chen, D., Yang, J. and Kitipornchai, S. (2017), "Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams", Compos. Sci. Technol., 142, 235-245. https://doi.org/10.1016/j.compscitech.2017.02.008.
  8. Chen, D., Yang, J. and Kitipornchai, S. (2019), "Buckling and bending analyses of a novel functionally graded porous plate using Chebyshev-Ritz method", Arch. Civil Mech. Eng., 19(1), 157-170. https://doi.org/10.1016/j.acme.2018.09.004.
  9. Chen, D., Yang, J. and Kitipornchai, S. (2016), "Free and forced vibrations of shear deformable functionally graded porous beams", Int. J. Mech. Sci., 108, 14-22. https://doi.org/10.1016/j.ijmecsci.2016.01.025.
  10. Chen, J., Tong, H., Yuan, J., Fang, Y. and Gu, R. (2022), "Permeability prediction model modified on Kozeny-Carman for building foundation of clay soil", Build., 12(11), 1798. https://doi.org/10.3390/buildings12111798.
  11. Daikh, A.A. and Zenkour, A.M. (2019a), "Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory", Mater. Res. Expr., 6(11), 115707. https://doi.org/10.1088/2053-1591/ab48a9.
  12. Daikh, A.A. and Zenkour, A.M. (2019b), "Effect of porosity on the bending analysis of various functionally graded sandwich plates", Mater. Res. Expr., 6(6), 065703. https://doi.org/10.1088/2053-1591/ab0971.
  13. Edwin, A., Anand, V. and Prasanna, K. (2017), "Sustainable development through functionally graded materials: An overview", Rasay. J. Chem., 10(1), 149-152. http://doi.org/10.7324/RJC.2017.1011578.
  14. Garg, A., Chalak, H.D., Li, L., Belarbi, M.O., Sahoo R. and Mukhopadhyay, T. (2022), "Vibration and buckling analyses of sandwich plates containing functionally graded metal foam core", Acta Mechanica Solida Sinica, 35, 1-16. https://doi.org/10.1007/s10338-021-00295-z.
  15. Gong, X., Wang, L., Mou, Y., Wang, H., Wei, X., Zheng W., and Yin, L. (2022), "Improved Four-channel PBTDPA control strategy using force feedback bilateral teleoperation system", Int. J. Control, Autom. Syst., 20(3), 1002-1017. https://doi.org/10.1007/s12555-021-0096-y.
  16. Gu, M., Cai, X., Fu, Q., Li, H., Wang, X. and Mao, B. (2022), "Numerical analysis of passive piles under surcharge load in extensively deep soft soil", Build., 12(11), 1988. https://doi.org/10.3390/buildings12111988.
  17. Hao, R.B., Lu, Z.Q., Ding, H. and Chen, L.Q. (2022), "A nonlinear vibration isolator supported on a flexible plate: analysis and experiment", Nonlin. Dyn., 108(2), 941-958. https://doi.org/10.1007/s11071-022-07243-7.
  18. Hong, C. (2022), "Advanced dynamic thermal vibration of thick FGM plates-cylindrical shells", Ocean Eng., 266(1), 112701. https://doi.org/10.1016/j.oceaneng.2022.112701.
  19. Hu, Z., Zhou, C., Zheng, X., Ni, Z. and Li, R. (2022), "Free vibration of non-Levy-type functionally graded doubly curved shallow shells: new analytic solutions", Compos. Struct., 304(2), 116389. https://doi.org/10.1016/j.compstruct.2022.116389.
  20. Kiarasi, F., Babaei, M., Asemi, K., Dimitri, R.and Tornabene, F. (2022), "Free vibration analysis of thick annular functionally graded plate integrated with Piezo-Magneto-Electro-Elastic layers in a hygrothermal environment", Appl. Sci., 12(20), 10682. https://doi.org/10.3390/app122010682.
  21. Kumar, R., Jain, A., Singh, M., Singh, J., and Singh, J. (2023), "Porosity-dependent buckling analysis of elastically supported FGM sandwich plate via new tangent HSDT: A meshfree approach", Int. J. Comput. Mater. Sci. Eng., 12(1), 2250013-2250319. https://doi.org/10.1142/S2047684122500130.
  22. Li, Q., Iu, V.P. and Kou, K.P. (2008), "Three-dimensional vibration analysis of functionally graded material sandwich plates", J. Sound Vib., 311(1-2), 498-515. https://doi.org/10.1016/j.jsv.2007.09.018.
  23. Lieu, Q. X., Lee, D., Kang, J. and Lee, J. (2019), "NURBS-based modeling and analysis for free vibration and buckling problems of in-plane bi-directional functionally graded plates", Mech. Adv. Mater. Struct., 26(12), 1064-1080. https://doi.org/10.1080/15376494.2018.1430273.
  24. Loh, G.H., Pei, E., Harrison, D. and Monzon, M.D. (2018), "An overview of functionally graded additive manufacturing", Addit. Manuf., 23, 34-44. https://doi.org/10.1016/j.addma.2018.06.023.
  25. Long, V.T. and Tung, H.V. (2021), "Mechanical buckling analysis of thick FGM toroidal shell segments with porosities using Reddy's higher order shear deformation theory", Mech. Adv. Mater. Struct., 5923-5932 https://doi.org/10.1080/15376494.2021.1969606.
  26. Masjedi, P.K., Maheri, A. and Weaver, P.M. (2019), "Large deflection of functionally graded porous beams based on a geometrically exact theory with a fully intrinsic formulation", Appl. Math. Model., 76, 938-957. https://doi.org/10.1016/j.apm.2019.07.018.
  27. Milazzo, A., Guarino, G. and Gulizzi, V. (2023), "Buckling and post-buckling of variable stiffness plates with cutouts by a single-domain Ritz method", Thin Wall. Struct., 182, 110282. https://doi.org/10.1016/j.tws.2022.110282.
  28. Neves, A.M.A, Ferreira, A.J.M. Carrera, E. Cinefra, M. Roque, C.M.C., Jorge, R.M.N. and Soares, C.M.M. (2013), "Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique", Compos. Part B: Eng., 44(1), 657-674. https://doi.org/10.1016/j.compositesb.2012.01.089.
  29. Shi, T., Liu, Y., Hu, Z., Cen, M., Zeng, C., Xu, J. and Zhao, Z. (2022), "Deformation performance and fracture toughness of carbon nanofiber-modified cement-based materials", ACI Mater. J., 119(5), 119-128. https://doi.org/10.14359/51735976.
  30. Singh, S.J. and Harsha, S.P. (2019), "Buckling analysis of FGM plates under uniform, linear and non-linear in-plane loading", J. Mech. Sci. Technol., 33(4), 1761-1767. https://doi.org/10.1007/s12206-019-0328-8.
  31. Singh, S.J. and Harsha, S.P. (2021), "Analysis of porosity effect on free vibration and buckling responses for sandwich sigmoid function based functionally graded material plate resting on Pasternak foundation using Galerkin Vlasov's method", J. Sandw. Struct. Mater., 23(5), 1717-1760. https://doi.org/10.1177/1099636220904340.
  32. Sinha, G.P. and Kumar, B. (2021), "Review on vibration analysis of functionally graded material structural components with cracks", J. Vib. Eng. Technol., 9(1), 23-49. https://doi.org/10.1007/s42417-020-00208-3.
  33. Udupa, G., Rao, S.S. and Gangadharan, K. (2014), "Functionally graded composite materials: an overview", Procedia Mater. Sci., 5, 1291-1299. https://doi.org/10.1016/j.mspro.2014.07.442.
  34. Vasara, D., Khare, S., Sharma H.K. and Kumar, R. (2022), "Free vibration analysis of functionally graded porous circular and annular plates using differential quadrature method", Force. Mech., 9, 100126. https://doi.org/10.1016/j.finmec.2022.100126.
  35. Wang, J., Tian, J., Zhang, X., Yang, B., Liu, S., Yin, L. and Zheng, W. (2022a), "Control of time delay force feedback teleoperation system with finite time convergence", Front. Neurorobot., 16, 877069. https://doi.org/10.3389/fnbot.2022.877069.
  36. Wang, Y.Q. and Zhang, Z.Y. (2019), "Bending and buckling of three-dimensional graphene foam plates", Result. Phys., 13, 102136. https://doi.org/10.1016/j.rinp.2019.02.072.
  37. Wang, Z.Z., Wang, T., Ding Y.M. and Ma, L.S. (2022), "A simple refined plate theory for the analysis of bending, buckling and free vibration of functionally graded porous plates reinforced by graphene platelets", Mech. Adv. Mater. Struct., 1-18. https://doi.org/10.1080/15376494.2022.2141383.
  38. Wei, T., Lu, J., Zhang, P., Yang, G., Sun, C., Zhou, Y., Zhuang, Q. and Tang, Y. (2022), "Metal-organic framework-derived Co3O4 modified nickel foam-based dendrite-free anode for robust lithium metal batteries", Chin. Chem. Lett., 107947. https://doi.org/10.1016/j.cclet.2022.107947.
  39. Wu, C.P. and Yu, L.T. (2018), "Quasi-3D static analysis of two-directional functionally graded circular plates", Steel Compos. Struct., 27(6), 789-801. https://doi.org/10.12989/scs.2018.27.6.789.
  40. Xiong, Q.M., Chen, Z., Huang, J.T., Zhang, M., Song, H., Hou, X.F., Li, X.B. and Feng, Z.J. (2020), "Preparation, structure and mechanical properties of Sialon ceramics by transition metal-catalyzed nitriding reaction", Rare Metal., 39(5), 589-596. https://doi.org/10.1007/s12598-020-01385-6.
  41. Zahari, K., Hilali, Y., Mesmoudi, S. and Bourihane, O. (2022), "Review and comparison of thin and thick FGM plate theories using a unified buckling formulation", Struct., 46, 1545-1560. https://doi.org/10.1016/j.istruc.2022.10.115.
  42. Zenkour, A.M. and Aljadani, M.H. (2021), "Quasi-3D refined theory for functionally graded porous plates: Vibration analysis", Физическая мезомеханика, 24(2), 56-70. https://doi.org/10.1134/S1029959921030036.
  43. Zenkour, A.M. and Aljadani, M.H. (2022), "Buckling response of functionally graded porous plates due to a Quasi-3D refined theory", Math., 10(4), 565. https://doi.org/10.3390/math10040565.
  44. Zenkour, A.M. and Radwan, A.F. (2019), "Hygrothermo-mechanical buckling of FGM plates resting on elastic foundations using a quasi-3D model", Int. J. Comput. Meth. Eng. Sci. Mech., 20(2), 85-98. https://doi.org/10.1080/15502287.2019.1568618.
  45. Zhang, H., Ouyang, Z., Li, L., Ma, W., Liu, Y., Chen, F. and Xiao, X. (2022), "Numerical study on welding residual stress distribution of corrugated steel webs", Metal., 12(11),1831. https://doi.org/10.3390/met12111831.
  46. Zhou, J., Chang, X. and Li, Y. (2022), "Nonlinear vibration analysis of functionally graded flow pipelines under generalized boundary conditions based on homotopy analysis", Acta Mechanica, 233, 5447-5463. https://doi.org/10.1007/s00707-022-03391-4.