Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.8.596

Preparation and Thermal Degradation Behavior of WO3-TiO2 Catalyst for Selective Catalytic Reduction of NOx  

Shin, Byeongkil (School of Materials Science & Engineering, Pusan National University)
Kim, Janghoon (National Core Research Center for hybrid materials solution, Pusan National University)
Yoon, Sanghyeon (School of Materials Science & Engineering, Pusan National University)
Lee, Heesoo (School of Materials Science & Engineering, Pusan National University)
Shin, Dongwoo (School of Nano and Advanced Materials Engineering, Gyeongsang National University)
Min, Whasik (Department of Chemical and Biological Engineering, Korea University)
Publication Information
Korean Journal of Metals and Materials / v.49, no.8, 2011 , pp. 596-600 More about this Journal
Abstract
Thermal degradation behavior of a $WO_3-TiO_2$ monolithic catalyst was investigated in terms of structural, morphological, and physico-chemical analyses. The catalyst with 4 wt.% $WO_3$ contents were prepared by a wet-impregnation method, and a durability test of the catalysts were performed in a temperature range between $400^{\circ}C$ and $800^{\circ}C$ for 3 h. An increase of thermal stress decreased the specific surface area, which was caused by grain growth and agglomeration of the catalyst particles. The phase transition from anatase to rutile occurred at around $800^{\circ}C$ and a decrease in the Brønsted acid sites was confirmed by structural analysis and physico-chemical analysis. A change in Brønsted acidity can affect to the catalytic efficiency; therefore, the thermal degradation behavior of the $WO_3-TiO_2$ catalyst could be explained by the transition to a stable rutile phase of $TiO_2$ and the decrease of specific surface area in the SCR catalyst.
Keywords
porous materials; powder processing; grain growth; raman spectroscopy; catalytic acid-site;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 H. Bosch and F. Janssen, Catal. Today 2, 369 (1988).   DOI   ScienceOn
2 M. Koebel and M. Elsener, Chem. Eng. Sci. 53, 657 (1998).   DOI   ScienceOn
3 S. Djerad, M. Crocoll, S. Kureti, L. Tifouti, and W. Weisweiler, Catal. Today 113, 208.
4 L. Lietti, J. Svachula, P. Frorzatti, G. Busca, G. Ramis, and F. Bregani, Catal. Today 17, 131 (1993).   DOI   ScienceOn
5 F. Hilbrig, H. Schmelz, and H. Knozinger In:L. Guczi, Editor, Prod. of the Tenth International Cong. on Catal., Budapest, Hungary, Elsevier, Amsterdam, 1351 (1993).
6 Yuanjing Zheng, Anker Degn Jensen, Jan Erik Johnsson, Joakim Reimer Thogersen, Appl. Catal. B 83, 186 (2008).   DOI   ScienceOn
7 G. Ramis, C. Cristiani, M.S. Elmi, P.L. Villa, and G. Busca, J. Mol. Catal. 61, 319 (1990).   DOI   ScienceOn
8 M. A. Vurrman, I. E. Wachs, and A. M. Hirt, J. Phys. Chem. 95, 9929 (1991).
9 J. A. Horsley, I. E. Wachs, J. M. Brown, G. H. Via, and F. D. Hardcastle, J. Phys. Chem. 91, 4014 (1987).   DOI
10 S. T. Choo, S. D. Yim, I. S. Nam, S. W. Ham, and J. B. Lee, Appl. Catal. B 44, 237 (2003).   DOI   ScienceOn
11 T. S. Lee, I. G. Lee, B. W. Lee, and D. W. Shin, J. Kor. Crystal Growth and Crystal Tech. 16, 216 (2006).
12 S. Djerad, L. Tifouti, M. Crocoll, and W. Weisweiler, J. Mol. Catal. A: Chem. 208, 257 (2004).   DOI   ScienceOn
13 B. Davis, R. Keogh, S. Alerasool, D. Zalewski, D. Day, and P. Doolin, J. Catal. 183, 45 (1999).   DOI   ScienceOn
14 M. Kobayashi and K. Miyoshi, Appl. Catal. B 72, 253 (2007).   DOI   ScienceOn
15 V. Kumar, N. Lee, and C. B. Almquist, Appl. Catal. B 69, 101 (2006).   DOI   ScienceOn
16 G. Madia, M. Elsener, M. Koebel, F. Raimondi, and A. Wokaun, Appl. Catal. B 39, 181 (2002).   DOI   ScienceOn