DOI QR코드

DOI QR Code

Shear Experiment and Simulation Analysis at Bonded Surface of Specimen Tapered Double Cantilever Beam with Expanded Aluminum

발포 알루미늄으로 된 경사진 이중외팔보 시험편의 접착면에서의 전단 실험 및 시뮬레이션 해석

  • Sun, Hong-Peng (Department of Mechanical Engineering, Graduate School, Kongju University) ;
  • Cheon, Seong S. (Division of Mechanical & Automotive Engineering, Kongju University) ;
  • Cho, Jae-Ung (Division of Mechanical & Automotive Engineering, Kongju University)
  • Received : 2014.12.08
  • Accepted : 2014.12.25
  • Published : 2014.12.31

Abstract

In this study, tapered double cantilever beam specimens are designed with the variable of angle to investigate the fracture property at the bonded surface of adjoint structure. These specimens are made with four kinds of models as the length of 200 mm and the slanted angles of bonded surfaces on specimens of $6^{\circ}$, $8^{\circ}$, $10^{\circ}$ and $12^{\circ}$. By investigating experiment and analysis result of these specimens, the maximum loads are happened at 120 N, 137 N, 154 N and 171 N respectively in cases of the specimens with slanted angles of $6^{\circ}$, $8^{\circ}$, $10^{\circ}$ and $12^{\circ}$. As the analysis result approach the experimental value, it is confirmed to have no much difference with the values of experiment and analysis. It is thought that the material property can be investigated effectively on shear behavior of the material composed of aluminum foam bonded with adhesive through simulation instead of experiment by applying this study method.

본 연구에서는 발포 알루미늄으로 구성된 접착 구조물에서의 접합면에 대한 파괴 특성을 조사하기 위하여 각도를 변수로 정하고 TDCB 시험편을 설계하였다. 이 시험편들은 길이는 200 mm이고 시험편에 대한 접착면의 경사 각도는 $6^{\circ}$, $8^{\circ}$, $10^{\circ}$$12^{\circ}$인 네 가지로 모델링을 하였다. 이 시험편들의 실험 및 해석을 분석한 결과, 경사면 각도가 $6^{\circ}$, $8^{\circ}$, $10^{\circ}$$12^{\circ}$인 경우에 시험편들의 최대 하중은 각각 약 120 N, 137 N, 154 N과 171 N으로 발생하였다. 해석의 결과 값이 실험치에 가까워져 많은 차이를 보이지 않는 것을 확인할 수 있다. 따라서 이와 같은 연구 방법을 응용하여 실험 대신 시뮬레이션을 통하여 접착제로 접착된 알루미늄 폼으로 된 재료의 전단 거동에 관한 물성치를 효율적으로 파악할 수 있다고 사료된다.

Keywords

References

  1. Kim, D.Y., Kwak, J.H., Lee, J.H., Park, K.W., Jeong, K.Y., and Cheon, S.S., "A Study on the Vibration Analysis for the Composite Multi-axial Optical Structure of an Aircraft," Journal of the Korean Society for Composite Materials, Vol. 24, No. 2, 2011, pp.14-21. https://doi.org/10.7234/kscm.2011.24.2.014
  2. British Standard, BS 7991, Determination of the Mode I Adhesive Fracture Energy GIC of Structure Adhesives Using the Double Cantilever Beam (DCB) and Tapered Double Cantilever Beam (TDCB) Specimens, Imperial College of Science and Technology, 2001, pp. 3-13.
  3. Boang, S.O., Kim, K.S., Kim, S.H., Song, S.G., and Cho, J.U., "Study on Compression test of Aluminum foam and honeycomb sandwich composites", Journal of the Korea Academia-Industrial Cooperation Society, Vol. 12, No. 9, 2011, pp. 3802-3807. https://doi.org/10.5762/KAIS.2011.12.9.3802
  4. Kim, D.B., Kim, K.W., and Cho, H.Y., "Shape Design of Self- Piercing Rivet for joining dissimilar Sheet Metals," Journal of Korean Society of Mechanical Technology, Vol. 14, 2012, pp. 93-99.
  5. Lee, J.K., "Elastic Analysis in Composite Including Multiple Elliptical Fibers," Journal of the Korean Society for Composite Materials, Vol. 24, No. 6, 2011, pp. 37-48. https://doi.org/10.7234/kscm.2011.24.6.037
  6. Cho, J.U., Hong, S.J., Lee, S.K., and Cho, C.D., "Impact Fracture behavior at the Material of Aluminum Foam?", Materials Science and Engineering A, Vol. 539, 2012, pp. 250-258. https://doi.org/10.1016/j.msea.2012.01.091
  7. Kim, S.S., Han, M.S., Cho, J.U., and Cho, C.D., "Study on the Fatigue Experiment of TDCB Aluminium Foam Specimen Bonded with Adhesive," International Journal of Precision Engineering and Manufacturing, Vol. 14, No. 10, 2013, pp. 1791-1795. https://doi.org/10.1007/s12541-013-0239-z
  8. Cho, J.U., Kinloch, A., Blackman, B., Rodriguez, S., Cho, C.D., and Lee, S.K., "Fracture Behavior of Adhesively-bonded Composite Materials under Impact Loading," International Journal of Precision Engineering and Manufacturing, Vol. 11, No. 1, 2010, pp. 89-95. https://doi.org/10.1007/s12541-010-0011-6
  9. Marzi, S., Biel, A., and Stigh, U., "On Experimental Methods to Investigate the Effect of Layer Thickness on the Fracture Behavior of Adhesively Bonded Joints," International Journal of Adhesion and Adhesives, Vol. 31, No. 8, 2011, pp. 840-850. https://doi.org/10.1016/j.ijadhadh.2011.08.004
  10. Hart-smith, L.J., "Further Developments in the Design and Analysis of Adhesive Bonded Structural Joints," McDonnell-Douglas Co. Paper 6922, 1980.
  11. Choi, H.K., and Cho, J.U., "Study on the Fatigue Analysis of DCB Model with Aluminum Foam", Journal of Korean Society of Mechanical Technology, Vol. 14 No. 6, 2012, pp. 39-43.