DOI QR코드

DOI QR Code

Preparation and Thermal Degradation Behavior of WO3-TiO2 Catalyst for Selective Catalytic Reduction of NOx

NOx 제거용 WO3-TiO2 계 SCR 촉매 제조 및 열적열화거동연구

  • Shin, Byeongkil (School of Materials Science & Engineering, Pusan National University) ;
  • Kim, Janghoon (National Core Research Center for hybrid materials solution, Pusan National University) ;
  • Yoon, Sanghyeon (School of Materials Science & Engineering, Pusan National University) ;
  • Lee, Heesoo (School of Materials Science & Engineering, Pusan National University) ;
  • Shin, Dongwoo (School of Nano and Advanced Materials Engineering, Gyeongsang National University) ;
  • Min, Whasik (Department of Chemical and Biological Engineering, Korea University)
  • 신병길 (부산대학교 재료공학부) ;
  • 김장훈 (부산대학교 하이브리드 소재 솔루션) ;
  • 윤상현 (부산대학교 재료공학부) ;
  • 이희수 (부산대학교 재료공학부) ;
  • 신동우 (경상대학교 신소재공학부) ;
  • 민화식 (고려대학교 화공생명공학과)
  • Received : 2010.08.02
  • Published : 2011.08.25

Abstract

Thermal degradation behavior of a $WO_3-TiO_2$ monolithic catalyst was investigated in terms of structural, morphological, and physico-chemical analyses. The catalyst with 4 wt.% $WO_3$ contents were prepared by a wet-impregnation method, and a durability test of the catalysts were performed in a temperature range between $400^{\circ}C$ and $800^{\circ}C$ for 3 h. An increase of thermal stress decreased the specific surface area, which was caused by grain growth and agglomeration of the catalyst particles. The phase transition from anatase to rutile occurred at around $800^{\circ}C$ and a decrease in the Brønsted acid sites was confirmed by structural analysis and physico-chemical analysis. A change in Brønsted acidity can affect to the catalytic efficiency; therefore, the thermal degradation behavior of the $WO_3-TiO_2$ catalyst could be explained by the transition to a stable rutile phase of $TiO_2$ and the decrease of specific surface area in the SCR catalyst.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. H. Bosch and F. Janssen, Catal. Today 2, 369 (1988). https://doi.org/10.1016/0920-5861(88)80002-6
  2. M. Koebel and M. Elsener, Chem. Eng. Sci. 53, 657 (1998). https://doi.org/10.1016/S0009-2509(97)00342-4
  3. S. Djerad, M. Crocoll, S. Kureti, L. Tifouti, and W. Weisweiler, Catal. Today 113, 208.
  4. L. Lietti, J. Svachula, P. Frorzatti, G. Busca, G. Ramis, and F. Bregani, Catal. Today 17, 131 (1993). https://doi.org/10.1016/0920-5861(93)80016-T
  5. F. Hilbrig, H. Schmelz, and H. Knozinger In:L. Guczi, Editor, Prod. of the Tenth International Cong. on Catal., Budapest, Hungary, Elsevier, Amsterdam, 1351 (1993).
  6. Yuanjing Zheng, Anker Degn Jensen, Jan Erik Johnsson, Joakim Reimer Thogersen, Appl. Catal. B 83, 186 (2008). https://doi.org/10.1016/j.apcatb.2008.02.019
  7. G. Ramis, C. Cristiani, M.S. Elmi, P.L. Villa, and G. Busca, J. Mol. Catal. 61, 319 (1990). https://doi.org/10.1016/0304-5102(90)80006-5
  8. M. A. Vurrman, I. E. Wachs, and A. M. Hirt, J. Phys. Chem. 95, 9929 (1991).
  9. J. A. Horsley, I. E. Wachs, J. M. Brown, G. H. Via, and F. D. Hardcastle, J. Phys. Chem. 91, 4014 (1987). https://doi.org/10.1021/j100299a018
  10. S. T. Choo, S. D. Yim, I. S. Nam, S. W. Ham, and J. B. Lee, Appl. Catal. B 44, 237 (2003). https://doi.org/10.1016/S0926-3373(03)00073-0
  11. T. S. Lee, I. G. Lee, B. W. Lee, and D. W. Shin, J. Kor. Crystal Growth and Crystal Tech. 16, 216 (2006).
  12. S. Djerad, L. Tifouti, M. Crocoll, and W. Weisweiler, J. Mol. Catal. A: Chem. 208, 257 (2004). https://doi.org/10.1016/j.molcata.2003.07.016
  13. B. Davis, R. Keogh, S. Alerasool, D. Zalewski, D. Day, and P. Doolin, J. Catal. 183, 45 (1999). https://doi.org/10.1006/jcat.1998.2387
  14. M. Kobayashi and K. Miyoshi, Appl. Catal. B 72, 253 (2007). https://doi.org/10.1016/j.apcatb.2006.11.007
  15. V. Kumar, N. Lee, and C. B. Almquist, Appl. Catal. B 69, 101 (2006). https://doi.org/10.1016/j.apcatb.2006.06.006
  16. G. Madia, M. Elsener, M. Koebel, F. Raimondi, and A. Wokaun, Appl. Catal. B 39, 181 (2002). https://doi.org/10.1016/S0926-3373(02)00099-1