• 제목/요약/키워드: Porous composites

검색결과 214건 처리시간 0.036초

SiC Fiber 강화 다공질 반응 소결 탄화규소 Composite의 제조 및 기계적 특성 (Fabrication of SiC Fiber Reinforced Porous Reaction Bonded SiC Composite and Its Mechanical Properties)

  • 한재호;박상환
    • 한국세라믹학회지
    • /
    • 제43권8호
    • /
    • pp.509-514
    • /
    • 2006
  • In this study, chopped Hi-Nicalon SiC fiber Reinforced Porous Reaction Bonded SiC (RBSC) composites and it fabrication process were developed by using Si melt infiltration process. The porosity and average pore size in fabricated chopped SiC fiber reinforced porous RBSC composites were in the range of $30{\sim}40%$ and $40-90{\mu}m$, which mainly determined by the SiC powder size used as starting material and amount of residual Si in porous composites. The maximum flexural strength of chopped SiC fiber reinforced porous RBSC composite was as high as 80 MPa. The delayed fracture behavior was observed in chopped SiC fiber reinforced porous RBSC composites upon 3-point bending strength test.

Fabrication of Porous Al2O3-(m-ZrO2) Composites and Al2O3-(m-ZrO2)/PMMA Hybrid Composites by Infiltration Process

  • Lee, Byong-Taek;Quang, Do Van;Song, Ho-Yeon
    • 한국세라믹학회지
    • /
    • 제44권6호
    • /
    • pp.291-296
    • /
    • 2007
  • Porous $Al_2O_3-(m-ZrO_2)$ composites were fabricated by pressureless sintering, using different volume percentages (40% - 60%) of poly methyl methacrylate (PMMA) powders as a pore-forming agent. The pore-forming agent was successfully removed, and the pore size and shape were well-controlled during the burn-out and sintering processes. The average pore size in the porous $Al_2O_3-(m-ZrO_2)$ bodies was about $200\;{\mu}m$ in diameter. The values of relative density, bending strength, hardness, and elastic modulus decreased as the PMMA content increased; i.e., in the porous body (sintered at $1500^{\circ}C$) using 55 vol % PMMA, their values were about 50.8%, 29.8 MPa, 266.4 Hv, and 6.4 GPa, respectively. To make the $Al_2O_3-(m-ZrO_2)$/polymer hybrid composites, a bioactive polymer, such as PMMA, was infiltrated into the porous $Al_2O_3-(m-ZrO_2)$ composites. After infiltration, most of the pores in the porous $Al_2O_3-(m-ZrO_2)$ composites, which were made using 60 vol % PMMA additions, were infiltrated with PMMA, and their values of relative density, bending strength, hardness, and elastic modulus remarkably increased.

다공성 SiC-Si 복합체의 전기비저항에 미치는 Si 첨가량의 영향 (Effect of Si Addition on Resistivity of Porous SiC-Si Composite for Heating Element Application)

  • 전신희;이원주;공영민
    • 한국재료학회지
    • /
    • 제25권5호
    • /
    • pp.258-263
    • /
    • 2015
  • To fabricate porous SiC-Si composites for heating element applications, both SiC powders and Si powders were mixed and sintered together. The properties of the sintered SiC-Si body were investigated as a function of SiC particle size and/or Si particle contents from 10 wt% to 40 wt%, respectively. Porous SiC-Si composites were fabricated by Si bonded reaction at a sintering temperature of $1650^{\circ}C$ for 80 min. The microstructure and phase analysis of SiC-Si composites that depend on Si particle contents were characterized using scanning electron microscope and X-ray diffraction. The electrical resistivity of SiC-Si composites was also evaluated using a 4-point probe resistivity method. The electrical resistivity of the sintered SiC-Si body sharply decreased as the amount of Si addition increased. We found that the electrical resistivity of porous SiC-Si composites is closely related to the amount of Si added and at least 20 wt% Si are needed in order to apply the SiCSi composites to the heating element.

석탄회의 재활용을 통한 다공질 뮬라이트 복합체의 제조 (Preparation of Porous Mullite Composites through Recycling of Coal Fly Ash)

  • 김원영;지형빈;양태영;윤석영;박홍채
    • 한국세라믹학회지
    • /
    • 제47권2호
    • /
    • pp.151-156
    • /
    • 2010
  • Porous mullite/alumina composites have been fabricated by a freeze casting technique using TBA-based coal fly ash/alumina slurry. After sintering, unidirectional macropore channels aligned regularly along the TBA ice growth direction were developed; simultaneously, small sized micropores fromed in the outer walls of the pore channels. The physical and mechanical properties (e.g. porosity and compressive strength) of the sintered porous composites were roughly dependant of processing conditions, due to the complexity of the factors affecting them. However, with increasing solid loading and sintering temperature, the compressive strength generally increased and the porosity decreased. After sintering $1500^{\circ}C$ for 2 h, the porous specimen (porosity: 52.1%) showed a maximum compressive strength of 70.0 MPa.

다공성 복합재료의 삼차원 거동 예측을 위한 분리-혼합 기법의 확장 (Extended Unmixing-Mixing Scheme for Prediction of 3D Behavior of Porous Composites)

  • 최회길;신의섭
    • 한국항공우주학회지
    • /
    • 제41권2호
    • /
    • pp.91-97
    • /
    • 2013
  • 고온에서 열분해 과정을 겪는 복합재료의 탄화 및 삭마 과정의 표면 침식은 주로 두께 방향으로 진행된다. 본 논문에서는 다공성 복합재료의 면내 및 두께 방향 거동을 효과적으로 기술하기 위하여 분리-혼합 기법을 적용하였다. 섬유와 기지로 구성된 복합재료의 횡방향 등방성 가정을 통해 분리-혼합 방정식을 삼차원으로 확장하였으며, 기공 압력, 열팽창, 열분해 과정의 수축 효과를 포함하였다. 다공성 복합재료의 대표 체적 요소를 유한요소법으로 해석하여 면내 및 두께 방향의 물성 값을 상호 비교함으로써, 확장된 분리-혼합 기법의 타당성을 확인하였다.

Optimal Porous Structure of MnO2/C Composites for Supercapacitors

  • Iwamura, Shinichiroh;Umezu, Ryotaro;Onishi, Kenta;Mukai, Shin R.
    • 한국재료학회지
    • /
    • 제31권3호
    • /
    • pp.115-121
    • /
    • 2021
  • MnO2 can be potentially utilized as an electrode material for redox capacitors. The deposition of MnO2 with poor electrical conductivity onto porous carbons supplies them with additional conductive paths; as a result, the capacitance of the electrical double layer formed on the porous carbon surface can be utilized together with the redox capacitance of MnO2. However, the obtained composites are not generally suitable for industrial production because they require the use of expensive porous carbons and/or inefficient fabrication methods. Thus, to develop an effective preparation procedure of the composite, a suitable structure of porous carbons must be determined. In this study, MnO2/C composites have been prepared from activated carbon gels with various pore sizes, and their electrical properties are investigated via cyclic voltammetry. In particular, mesoporous carbons with a pore size of around 20 nm form a composite with a relatively low capacitance (98 F/g-composite) and poor rate performance despite the moderate redox capacitance obtained for MnO2 (313 F/g-MnO2). On the other hand, using macro-porous carbons with a pore size of around 60 nm increases the MnO2 redox capacitance (399 F/g-MnO2) as well as the capacitance and rate performance of the entire material (203 F/g-composite). The obtained results can be used in the industrial manufacturing of MnO2/C composites for supercapacitor electrodes from the commercially available porous carbons.

조성 경사구조를 갖는 다공질 Al2O3-(t-ZrO2)/HAp 복합체의 제조 및 In-Vitro 실험 (Fabrication of Functionally Gradient Porous Al2O3-(t-ZrO2)/HAp Composites and their In-Vitro Study)

  • 김기호;김영희;송호연;이병택
    • 한국세라믹학회지
    • /
    • 제43권8호
    • /
    • pp.504-508
    • /
    • 2006
  • Functionally gradient porous $Al_2O_3-(t-ZrO_2)/HAp$ composites consist of 3 layers were fabricated using the multi-pass extrusion process at the various temperatures. The continuous pores were homogeneously formed in the $2^{nd}$ passed samples and their size was about $180{\mu}m$ in diameter. In the porous composites sintered at $1200-1400^{\circ}C$, the relative density and bending strength increased with the sintering temperature. The maximum values of relative density and bending strength in the $2^{nd}$ passed $Al_2O_3-(t-ZrO_2)/HAp$ composites were 62.2% and 107.8 MPa, respectively. In order to investigate the growth behavior of osteogenic cells on the functionally gradient porous $Al_2O_3-(t-ZrO_2)/HAp$ composites, an in vitro test was performed, using human osteoblast-like MG-63 cells. The cells were well attached and grown on the rough surface of the inside of the functionally gradient porous body.

An Analytical Study on Prediction of Effective Properties n Porous and Non-Porous Piezoelectric Composites

  • Lee Jae-Kon
    • Journal of Mechanical Science and Technology
    • /
    • 제19권11호
    • /
    • pp.2025-2031
    • /
    • 2005
  • Eshelby type micro mechanics model with a newly developed piezoelectric Eshelby tensor is proposed for predicting the effective electroelastic properties of the piezoelectric composite. The model is applied for piezoelectric solids containing both porosities and metal inhomogeneities. The effective electroelastic moduli of the composites such as stiffness, piezoelectric constants, and dielectric constants are predicted by the present model, which are extensively compared with the existing experimental results from the literatures. The validity of Eshelby type model for predicting the effective properties of the composite is thoroughly examined. It can be concluded from this study that a new mechanism is needed to compute correctly the dielectric constants among the effective properties of the composites.

다공성 복합재의 파손 강도 예측을 위한 미시역학 전산 해석 (Micromechanical Computational Analysis for the Prediction of Failure Strength of Porous Composites)

  • 양대규;신의섭
    • Composites Research
    • /
    • 제29권2호
    • /
    • pp.66-72
    • /
    • 2016
  • 고온에서 열화학적 분해 현상을 겪는 고분자 기지 복합재료는 기지 내부의 기공도가 급격히 증가한다. 기공의 생성은 재료의 탄성 계수와 파손 강도를 감소시키며, 기공 내부의 가스 압력은 재료의 열기계적 거동에 영향을 준다. 본 논문에서는 기지 내부에 많은 기공이 포함된 일방향 섬유 강화 복합재료의 이차원 대표 체적 요소를 설정하고 유한요소 해석을 수행하였다. 이를 통해 기공 상태에 따른 복합재료의 유효 탄성 계수, 기공 탄성 계수, 파손 강도 등을 산출하였다. 특히, 기지 재료의 특성에 많은 영향을 받는 섬유 수직 방향의 파손 강도가 원래 기지 강도보다 현격히 낮게 산출되며, 기공도가 증가함에 따라 지속적으로 떨어지는 경향을 확인하였다.

폐 SiC 슬러지를 이용하여 제조한 연속다공질 SiC-Si3N4 복합체의 미세조직 (Microstructures Of Continuously Porous SiC-Si3N4 Composites Fabricated Using Waste SiC Sludge)

  • ;이희정;장희동;이병택
    • 한국재료학회지
    • /
    • 제15권3호
    • /
    • pp.177-182
    • /
    • 2005
  • Large amounts of the waste SiC sludge containing small amounts of Si and organic lubricant were produced during the wire cutting process of the single silicon crystal ingots. The waste SiC sludge was purified by the washing process and the purified SiC powders were used to fabricate continuously porous $SiC-Si_3N_4$ composites using a fibrous monolithic process, in which carbon, $6wt\%\;Y_2O_3-2\;wt\%\;A1_2O_3$ and ethylene vinyl acetate were added as a pore-forming agent, sintering additives, and binder, respectively. In the burning-out process, carbon was fully removed and continuously porous $SiC-Si_3N_4$ composites were successfully fabricated. The green bodies containing SiC, Si particles and sintering additives were nitrided at $1410^{\circ}C$ in a flowing $N_2+10\%\;H_2$ gas mixture. Continuously porous composites were combined with SiC, ${\alpha}Si_3N_4,\;\beta-Si_3N_4$ and a few $\%$ of Fe phases. The pore size of the 2nd and the 3rd passed $SiC-Si_3N_4$ composites was $260\;{\mu}m$ and $35\;{\mu}m$ in diameter, respectively.