Browse > Article
http://dx.doi.org/10.3740/MRSK.2015.25.5.258

Effect of Si Addition on Resistivity of Porous SiC-Si Composite for Heating Element Application  

Jun, Shinhee (School of Materials Science and Engineering, University of Ulsan)
Lee, Wonjoo (Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology (KRICT))
Kong, Young-Min (School of Materials Science and Engineering, University of Ulsan)
Publication Information
Korean Journal of Materials Research / v.25, no.5, 2015 , pp. 258-263 More about this Journal
Abstract
To fabricate porous SiC-Si composites for heating element applications, both SiC powders and Si powders were mixed and sintered together. The properties of the sintered SiC-Si body were investigated as a function of SiC particle size and/or Si particle contents from 10 wt% to 40 wt%, respectively. Porous SiC-Si composites were fabricated by Si bonded reaction at a sintering temperature of $1650^{\circ}C$ for 80 min. The microstructure and phase analysis of SiC-Si composites that depend on Si particle contents were characterized using scanning electron microscope and X-ray diffraction. The electrical resistivity of SiC-Si composites was also evaluated using a 4-point probe resistivity method. The electrical resistivity of the sintered SiC-Si body sharply decreased as the amount of Si addition increased. We found that the electrical resistivity of porous SiC-Si composites is closely related to the amount of Si added and at least 20 wt% Si are needed in order to apply the SiCSi composites to the heating element.
Keywords
SiC-Si composite; sintering; density; electrical resistivity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 K. J. Kim, K. Y. Lim, Y. W. Kim, M. J. Lee, and W. S. Seo, J. Eur. Ceram. Soc., 34, 1695 (2014).   DOI   ScienceOn
2 S. H. Lee and H. D. Kim, Ceramist (in Korean), 13(6), 26 (2010).
3 K. Pellisier, T. Chartier, and J. M. Laurent, Ceram. Int., 24, 371 (1998).   DOI   ScienceOn
4 D. Galsterer, N. Travitzky, T. Wolff, and P. Greil, Adv. Eng. Mater., 10(12), 1134 (2008).   DOI   ScienceOn
5 C. Benaqqa, M. Gmina, A. Beurotte, M. Boussuge, B. Delattre, K. Pajot, E. Pawlak, and F. Rodrigues, Appl. Therm. Eng., 62, 599 (2014).   DOI   ScienceOn
6 K. Ohno, J. Korean Ceram. Soc., 45(9), 497 (2008).   DOI   ScienceOn
7 Y. Aihara, S. Hanzawa, and T. Komiyama, Patent, EP0885858B1.
8 S. Suyama, T. Kameda, and Y. Itoh, Diam. Relat. Mater., 12, 1201 (2003).   DOI   ScienceOn
9 K. J. Kim, K. Y. Lim, Y. W. Kim, M. J. Lee, and W. S. Seo, J. Euro. Ceram. Soc., 34, 1695 (2014).   DOI   ScienceOn
10 S. H. Lee, J. Am. Ceram. Soc., 94(9), 2746 (2011).   DOI   ScienceOn
11 T. Yamamoto, H. Kitaura, Y. Kodera, T. Ishii, M. Ohyanagi, and Z. A. Munir, J. Am. Ceram. Soc., 87(8), 1436 (2004).   DOI   ScienceOn
12 I. H. Song, J. H. Ha, M. J. Park, H. D. Kim, and Y. W. Kim, J. Ceram. Soc. Jpn., 120(9), 370 (2012).   DOI
13 F. Siegelin, H-J. Kleebe, and L. S. Sigl, J. Mater. Res., 18(11), 2608 (2003).   DOI   ScienceOn
14 Y. J. Kim, Y. S. Park, Y. W. Jung, J. B. Song, S. Y. Park, and H. J. Im, J. Korean Soc. Compos. Mater., 25(6), 172 (2012).   DOI   ScienceOn
15 M. Zulfequar and A. Kumar, Rev. Phys. Appl., 21, 525 (1986).   DOI
16 D. William and Jr. Callister, Materials Science and Engineering An Introduction, p.807, Sigma Press, Korea, (2009).