Browse > Article
http://dx.doi.org/10.3740/MRSK.2005.15.3.177

Microstructures Of Continuously Porous SiC-Si3N4 Composites Fabricated Using Waste SiC Sludge  

Gain Asit Kumar (School of Advanced Materials Engineering, Kongju National University)
Lee Hee-Jung (School of Advanced Materials Engineering, Kongju National University)
Jang Hee-Dong (Minerals & Materials Processing Division, Korea Institute of Geoscience & Mineral Resources (KIGAM))
Lee Byong-Taek (School of Advanced Materials Engineering, Kongju National University)
Publication Information
Korean Journal of Materials Research / v.15, no.3, 2005 , pp. 177-182 More about this Journal
Abstract
Large amounts of the waste SiC sludge containing small amounts of Si and organic lubricant were produced during the wire cutting process of the single silicon crystal ingots. The waste SiC sludge was purified by the washing process and the purified SiC powders were used to fabricate continuously porous $SiC-Si_3N_4$ composites using a fibrous monolithic process, in which carbon, $6wt\%\;Y_2O_3-2\;wt\%\;A1_2O_3$ and ethylene vinyl acetate were added as a pore-forming agent, sintering additives, and binder, respectively. In the burning-out process, carbon was fully removed and continuously porous $SiC-Si_3N_4$ composites were successfully fabricated. The green bodies containing SiC, Si particles and sintering additives were nitrided at $1410^{\circ}C$ in a flowing $N_2+10\%\;H_2$ gas mixture. Continuously porous composites were combined with SiC, ${\alpha}Si_3N_4,\;\beta-Si_3N_4$ and a few $\%$ of Fe phases. The pore size of the 2nd and the 3rd passed $SiC-Si_3N_4$ composites was $260\;{\mu}m$ and $35\;{\mu}m$ in diameter, respectively.
Keywords
fibrous monolithic process; continuously porous; waste SiC powder;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. Y. Lee and B. T. Lee, Ceram. Trans., 93, 51 (1998)
2 D. H. Kuo and W. M. Kriven, J. Eur. Ceram. Soc., 18, 51 (1998)   DOI   ScienceOn
3 B. T. Lee, H. G. Jeong and K. Hiraga, Mater. Trans. JIM, 43, 19 (2002)   DOI   ScienceOn
4 S. Y. Lee and B. T. Lee, Ceram. Trans., 93, 51 (1998)
5 B. T. Lee, J. H. Yoo and H. D. Kim, Kor. J. Mater. Res., 9, 577 (1999)   과학기술학회마을
6 T. S. Kim, I. C. Kang, T. Goto and B. T. Lee, Mater. Trans., 44, 1851 (2003)   DOI   ScienceOn
7 S. Y. Lienard, D. Kovar, R. J. Bowman and J. W. Halloran, J. Mater. Sci., 35, 3365 (2000)   DOI   ScienceOn
8 T. S. Kim, K. H. Kim, T. Goto and B. T. Lee, Mater. Trans., 45, 431 (2003)   DOI   ScienceOn
9 B. T. Lee and H. D. Kim, Mater. Trans., JIM, 10, 1547 (1996)   DOI
10 B. T. Lee, D. H. Jang and T. S. Kim, J. Euro. Ceram. Soc., 24, 2313 (2004)   DOI   ScienceOn
11 J. F. Li, S. Satomi, R. Watanbe, M. Omori and T. Hirai, J. Eur. Ceram. Soc., 20, 1795 (2000)   DOI   ScienceOn
12 G. Rixecker, K. Biswas, I. Wiedmann and F. Aldinger, J. Ceram. Pro. Res., 1, 12 (2000)
13 H. S. Ahn and D. J. Choi, J. Ceram. Pro. Res., 2, 79 (2001)
14 P. M. Farries, E. Bullock and R. D. Rawlings, J. Mater. Sci. Lett., 18, 1727 (1999)   DOI   ScienceOn
15 A. D. Mazzoniand and E. F.Aglietti, Ceram. Int., 24, 327 (1998)   DOI   ScienceOn
16 D. Shaoming, J. Dongliang, T. Shouhong and G. Jingkun, Ceram. Int., 21, 451 (1995)   DOI   ScienceOn