• 제목/요약/키워드: Porous 3C-SiC

검색결과 151건 처리시간 0.028초

양극 산화법으로 형성된 다공질 3C-SiC 막의 특성 (Characteristics of porous 3C-SiC thins formed by anodization)

  • 김강산;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.45-45
    • /
    • 2009
  • This paper describes the formation of porous 3C-SiC by anodization. 3C-SiC thin films were deposited on p-type Si(100) substrates by APCVD using HMDS (Hexamethyildisilane: $Si_2(CH_3)_6$). UV-LED(380 nm) was used as a light source. The surface morphology was observed by SEM and the pore size was increased with increase of current density. Pore diameter of 70 ~ 90 nm was achieved at 7.1 $mA/cm^2$ current density and 90 sec anodization time. FT-IR was conducted for chemical bonding of thin film and porous 3C-SiC. The Si-H bonding was observed in porous 3C-SiC around wavenumber 2100 $cm^{-1}$. PL shows the band gap enegry of thin film (2.5 eV) and porous 3C-SiC (2.7 eV).

  • PDF

In-situ 도핑량이 다공성 3C-SiC 박막의 특성에 미치는 영향 (Effects of In-situ doping Concentration on the Characteristics of Porous 3C-SiC Thin Films)

  • 김강산;정귀상
    • 한국전기전자재료학회논문지
    • /
    • 제23권6호
    • /
    • pp.487-490
    • /
    • 2010
  • This paper describes the elecrtical and optical characteristics of $N_2$ doped porous 3C-SiC films. Polycrystalline 3C-SiC thin films are anodized by $HF+C_2H_5OH$ solution with UV-LED exposure. The growth of in-situ doped 3C-SiC thin films on p-type Si (100) wafers is carried out by using APCVD (atmospheric pressure chemical vapor deposition) with a single-precursor of HMDS (hexamethyildisilane: $Si_2(CH_3)_6)$. 0 ~ 40 sccm $N_2$ was used for doping. After the growth of doped 3C-SiC, porous 3C-SiC is formed by anodization with $7.1\;mA/cm^2$ current density for anodization time of 60 sec. The average pore diameter is about 30 nm, and etched area is increased with $N_2$ doping rate. These results are attributed to the decrease of crystallinity by $N_2$ doping. Mobility is dramatically decreased in porous 3C-SiC. The band gaps of polycrystalline 3C-SiC films and doped porous 3C-SiC are 2.5 eV and 2.7 eV, respectively.

양극산화법과 UV-LED를 이용한 다공성 3C-SiC 박막 형성 (Formation of porous 3C-SiC thin film by anodization with UV-LED)

  • 김강산;정귀상
    • 센서학회지
    • /
    • 제18권4호
    • /
    • pp.307-310
    • /
    • 2009
  • This paper describes the formation of porous 3C-SiC by anodization. 3C-SiC thin films were deposited on p-type Si(100) substrates by APCVD using HMDS(Hexamethyildisilane: $Si_2(CH_3)_6$). UV-LED(380 nm) was used as a light source. The surface morphology was observed by SEM and the pore size was increased with increase of current density. Pore diameter of 70 $\sim$ 90 nm was achieved at 7.1 mA/cm$^2$ current density and 90 sec anodization time. FT-IR was conducted for chemical bonding of thin film and porous 3C-SiC. The Si-H bonding was observed in porous 3C-SiC around wavenumber 2100 cm$^{-1}$. PL shows the band gap enegry of thin film(2.5 eV) and porous 3C-SiC(2.7 eV).

도핑량에 따른 다공성 3C-SiC 박막의 전기 및 광학적 특성 (Electrical and optical characteristics of porous 3C-SiC thin films with dopants)

  • 김강산;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.27-27
    • /
    • 2010
  • This paper describes the electrical and optical characteristics of $N_2$ doped porous 3C-SiC films. Average pore diameter is about 30 nm and etched area was increased with $N_2$ doping rate. The mobility was dramatically decreased in porous 3C-SiC. The band gaps of polycrystalline 3C-SiC films and doped porous 3C-SiC were 2.5 eV and 2.7 eV, respectively.

  • PDF

질소가 도핑된 다공질 3C-SiC 박막의 열적, 기계적 특성 (Thermal and Mechanical Properties of a N2 Doped Porous 3C-SiC Thin Film)

  • 김강산;정귀상
    • 한국전기전자재료학회논문지
    • /
    • 제23권8호
    • /
    • pp.651-654
    • /
    • 2010
  • This paper describes the thermal and mechanical properties of doped thin film 3C-SiC and porous 3C-SiC. In this work, the in-situ doped thin film 3C-SiC was deposited by using atmospheric pressure chemical vapor deposition (APCVD) method at $120^{\circ}C$ using single-precursor hexamethyildisilane: $Si_2(CH_3)_6$ (HMDS) as Si and C precursors. 0~40 sccm $N_2$ gas was used as doping source. After growing of doped thin film 3C-SiC, porous structure was achieved by anodization process with 380 nm UV-LED. Anodization time and current density were fixed at 60 sec and 7.1 mA/$cm^2$, respectively. The thermal and mechanical properties of the $N_2$ doped porous 3C-SiC was measured by temperature coefficient of resistance (TCR) and nano-indentation, respectively. In the case of 0 sccm, the variations of TCR of thin film and porous 3C-SiC are similar, but TCR conversely changed with increase of $N_2$ flow rate. Maximum young's modulus and hardness of porous 3C-SiC films were measured to be 276 GPa and 32 Gpa at 0 sccm $N_2$, respectively.

SiC Fiber 강화 다공질 반응 소결 탄화규소 Composite의 제조 및 기계적 특성 (Fabrication of SiC Fiber Reinforced Porous Reaction Bonded SiC Composite and Its Mechanical Properties)

  • 한재호;박상환
    • 한국세라믹학회지
    • /
    • 제43권8호
    • /
    • pp.509-514
    • /
    • 2006
  • In this study, chopped Hi-Nicalon SiC fiber Reinforced Porous Reaction Bonded SiC (RBSC) composites and it fabrication process were developed by using Si melt infiltration process. The porosity and average pore size in fabricated chopped SiC fiber reinforced porous RBSC composites were in the range of $30{\sim}40%$ and $40-90{\mu}m$, which mainly determined by the SiC powder size used as starting material and amount of residual Si in porous composites. The maximum flexural strength of chopped SiC fiber reinforced porous RBSC composite was as high as 80 MPa. The delayed fracture behavior was observed in chopped SiC fiber reinforced porous RBSC composites upon 3-point bending strength test.

폐 SiC 슬러지를 이용하여 제조한 연속다공질 SiC-Si3N4 복합체의 미세조직 (Microstructures Of Continuously Porous SiC-Si3N4 Composites Fabricated Using Waste SiC Sludge)

  • ;이희정;장희동;이병택
    • 한국재료학회지
    • /
    • 제15권3호
    • /
    • pp.177-182
    • /
    • 2005
  • Large amounts of the waste SiC sludge containing small amounts of Si and organic lubricant were produced during the wire cutting process of the single silicon crystal ingots. The waste SiC sludge was purified by the washing process and the purified SiC powders were used to fabricate continuously porous $SiC-Si_3N_4$ composites using a fibrous monolithic process, in which carbon, $6wt\%\;Y_2O_3-2\;wt\%\;A1_2O_3$ and ethylene vinyl acetate were added as a pore-forming agent, sintering additives, and binder, respectively. In the burning-out process, carbon was fully removed and continuously porous $SiC-Si_3N_4$ composites were successfully fabricated. The green bodies containing SiC, Si particles and sintering additives were nitrided at $1410^{\circ}C$ in a flowing $N_2+10\%\;H_2$ gas mixture. Continuously porous composites were combined with SiC, ${\alpha}Si_3N_4,\;\beta-Si_3N_4$ and a few $\%$ of Fe phases. The pore size of the 2nd and the 3rd passed $SiC-Si_3N_4$ composites was $260\;{\mu}m$ and $35\;{\mu}m$ in diameter, respectively.

다공성 3C-SiC 기반 저항식 수소센서의 제작과 그 특성 (Fabrication of a Porous 3C-SiC Based Resistivity Hydrogen Sensor and Its Characteristics)

  • 김강산;정귀상
    • 센서학회지
    • /
    • 제20권3호
    • /
    • pp.168-171
    • /
    • 2011
  • Porous 3C-SiC(pSiC) samples with different pore diameters were prepared from poly crystalline N-type 3C-SiC by electrochemical anodization. The pSiC surface was chemically modified by the sputtering of Pd and Pt nano-particles as a hydrogen catalyst. Changes in resistance were monitored with hydrogen concentrations in the range of 110 ppm - 410 ppm. The variations of the electrical resistance in the presence of hydrogen demonstrated that Pd and Pt-deposited pSiC samples have the ability to detect hydrogen at room temperature. Regardless of the catalyst, the 25 nm pore diameter samples showed good response and recovery properties. However, the 60 nm samples showed unstable and slow response. It was found that the pore size affects the catalyst reaction and consequently, results in changes of the sensitivity to hydrogen.

Thermal Fatigue Behavior of 3D-Woven SiC/SiC Composite with Porous Matrix for Transpiration Cooling Passages

  • Hayashi, Toshimitsu;Wakayama, Shuichi
    • Advanced Composite Materials
    • /
    • 제18권1호
    • /
    • pp.61-75
    • /
    • 2009
  • The effect of porous matrix on thermal fatigue behavior of 3D-orthogonally woven SiC/SiC composite was evaluated in comparison with that having relatively dense matrix. The porous matrix yields open air passages through its thickness which can be utilized for transpiration cooling. On the other hand, the latter matrix is so dense that the air passages are sealed. A quantity of the matrix was varied by changing the number of repetition cycles of the polymer impregnation pyrolysis (PIP). Strength degradation of composites under thermal cycling conditions was evaluated by the $1200^{\circ}C$/RT thermal cycles with a combination of burner heating and air cooling for 200 cycles. It was found that the SiC/SiC composite with the porous matrix revealed little degradation in strength during the thermal cycles, while the other sample showed a 25% decrease in strength. Finally it was demonstrated that the porous structure in 3D-SiC/SiC composite improved the thermal fatigue durability.

Fabrication of Mullite-Bonded Porous SiC Using Ti3AlC2 MAX Phase

  • Septiadi, Arifin;Yoon, Dang-Hyok
    • 한국세라믹학회지
    • /
    • 제56권2호
    • /
    • pp.191-196
    • /
    • 2019
  • This study assessed the feasibility of a Ti3AlC2 MAX phase as an Al-source for the formation of a mullite bond in the fabrication of porous SiC tubes with high strength. The as-received Ti3AlC2 was partially oxidized at 1200℃ for 30 min before using to minimize the abrupt volume expansion caused by oxidation during sintering. Thermal treatment at 1100-1400℃ for 3 h in air led to the formation of Al2O3 by the decomposition of Ti3AlC2, which reacted further with oxidation-derived SiO2 on the SiC surface to form a mullite phase. The fabricated porous SiC tubes with a relative density of 48 - 62 % exhibited mechanical strengths of 80 - 200 MPa, which were much higher than those with the Al2O3 filler material. The high mechanical strength of the Ti3AlC2-added porous SiC was explained by the rigid mullite neck formation along with the retained Ti3AlC2 with good mechanical properties.