• Title/Summary/Keyword: Pore Volume

Search Result 830, Processing Time 0.021 seconds

Strength and Reliability of Porous Ceramics Measured by Sphere Indentation on Bilayer Structure

  • Ha, Jang-Hoon;Kim, Jong-Ho;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.503-507
    • /
    • 2004
  • The importance of porous ceramics has been increasingly recognized and adequate strength of porous ceramics is now required for structural applications. Porosities of porous ceramics act as flaws in inner volume and outer surface which result in severe strength degradation. The effect of pore structure, however, on strength and reliability of porous ceramics has not been clearly understood. We investigate the relationship between pore structure and mechanical properties using a sphere indentation on bilayer structure, porous ceramic top layer with soft polymer substrate. Porous alumina and silica were prepared to characterize the isolated pore structure and interconnected pore structure, respectively. The porous ceramic with 1mm thickness were bonded to soft polycarbonate substrate and then fracture strengths were estimated from critical loads for radial cracking of porous ceramics during sphere indentation from top surface. This simple and reproducible technique provides Weibull modulus of strength of porous ceramics with different pore structure. It shows that the porous ceramics with isolated pore structure have higher strength and higher Weibull modulus as well, than those with interconnected pore structure even with the same porosity.

Fractal kinetic characteristics of uranium leaching from low permeability uranium-bearing sandstone

  • Zeng, Sheng;Shen, Yuan;Sun, Bing;Tan, Kaixuan;Zhang, Shuwen;Ye, Wenhao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1175-1184
    • /
    • 2022
  • The pore structure of uranium-bearing sandstone is one of the critical factors that affect the uranium leaching performance. In this article, uranium-bearing sandstone from the Yili Basin, Xinjiang, China, was taken as the research object. The fractal characteristics of the pore structure of the uranium-bearing sandstone were studied using mercury intrusion experiments and fractal theory, and the fractal dimension of the uranium-bearing sandstone was calculated. In addition, the effect of the fractal characteristics of the pore structure of the uranium-bearing sandstone on the uranium leaching kinetics was studied. Then, the kinetics was analyzed using a shrinking nuclear model, and it was determined that the rate of uranium leaching is mainly controlled by the diffusion reaction, and the dissolution rate constant (K) is linearly related to the pore specific surface fractal dimension (DS) and the pore volume fractal dimension (DV). Eventually, fractal kinetic models for predicting the in-situ leaching kinetics were established using the unreacted shrinking core model, and the linear relationship between the fractal dimension of the sample's pore structure and the dissolution rate during the leaching was fitted.

Studies on the Pore of Coating Layer and Printability (IV) -Effects of Blending Ratio of Pigments- (도공층의 공극과 인쇄적성에 관한 연구(제4보) -안료 배합 비율이 미치는 영향-)

  • 김창근;이용규
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.3
    • /
    • pp.29-36
    • /
    • 2001
  • This paper was made to evaluate the effect of the blending ration of GCC and No. 1 clay on the printability by investigating the structure of pore such as the pore rate, the number of pores, pore size and distribution of coated paper. The coated structure is mainly depended on the results of correlation between pigment and binder. It means that the structure of the pore occurred is chiefly affected by the blending ratio of GCC and No. 1 clay. This physical properties of the pore have a close relation with ink set-off associated with the drying rate and the penetration in ink into base paper and with printing gloss. Therefore it was needed to find out how the pore structure and the printability will be changed by modifying the blending ratio of GCC and No. 1 clay to vary the pore structure of coated paper. Below are the results of measurement: As the blending ratio of clay going up, water retention, sedimentation volume. smoothness, and paper gloss were increased, but relatively brightness and opacity were decreased. Pore rate was the highest at the blending ratio of No. 1 clay to GCC, 70:30. In this case, average pore radius was also increased. Ink receptivity and K&N ink receptivity were improved with the increase of the blending ratio of GCC, where was, ink setting was vice versa. No difference was observed in the weight of ink, but ink repellance decrease with the decrease of blending ratio of GCC.

  • PDF

Preparation process of functional particles : I. Preparation of microcapsule by spray drying (기능성 미분말의 제조공정에 관한 연구 : I. 분무건조법에 의한 microcapsule 제조)

  • 정철원;허화범;박종현;신건철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.521-531
    • /
    • 1996
  • Inorganic and inorganic/organic microcapsules were prepared by spray drying. $K_{4}SO$ and clay were used as the core and colloidal silica as the shell for the inoroganic microcapsules. Forthe inorganic/organic microcapsules were used the inorganic microcapsule which were mentioned above (core) and ethyl cellulose (shell). To characterize the prepared microcapsule for the practical use, the homogenity of surface and pore volume are the dominent factors. At the volume ratio of 0.3/0.7 of core/shell, the spherical and homogeneous surfaces of inorganic microcapsule could be synthesized. In the case of inorganic/organic microcapsules, the weitht ratio was 0.76/0.24. The pore volume of inorganic/organic microcapsules decreases more than that of inorganic microcapsule. The more the amount of shell (ethyl cellulose) in inorganic/organic microcapsules increases, the more the coating became homogeneous and the pore volume decreased.

  • PDF

Preparation and Electrochemical Applications of Pore-filled Ion-exchange Membranes with Well-adjusted Cross-linking Degrees: Part II. Reverse Electrodialysis (가교도가 조절된 세공충진 이온교환막의 제조 및 전기화학적 응용: Part II. 역 전기투석)

  • Song, Hyun-Bee;Moon, Ha-Neul;Kim, Do-Hyeong;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.441-448
    • /
    • 2017
  • In this study, the effects of membrane characteristics on the power generation performance in reverse electrodialysis (RED) have been investigated with pore-filled ion-exchange membranes (PFIEMs) prepared by employing a porous polyethylene substrate and the mixtures of three cross-linking agents. As a result, it was confirmed through the correlation analyses that the cross-linking degree and free volume of the PFIEMs were effectively controlled by mixing the cross-linking agents having different molecular sizes, influencing complexly the electrochemical characteristics of the membranes and the power generation performance in RED. In particular, the pore-filled cation-exchange membranes at the optimum cross-linking conditions exhibited the power generation performance superior to that of the commercial membranes and the pore-filled anion-exchange membranes also showed the excellent performance close to that of the commercial membrane.

Effect of pH on Pore Characteristics in Synthesis of High Porous AlO(OH) Gel by Hydrolysis of Al2(SO4)3 and Na2SO4 Mixed Solution (Al2(SO4)3와 Na2SO4 혼합용액의 가수분해에 의한 고기공 AlO(OH) 겔의 합성에서 pH가 기공특성에 미치는 영향)

  • Park, Byung-Ki;Choe, Dong-Uk;Lee, Jae-Rock
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.6 s.301
    • /
    • pp.325-330
    • /
    • 2007
  • High porous AlO(OH) gel is used in precursor of ceramic material, coating material and porous catalyst. For use of these, not only physiochemical control for particle morphology, pore characteristic and peptization but also studies of synthetic method for preparation of high porous AlO(OH) gel were required. In this study, high porous AlO(OH) gel was prepared through the aging and filtration process of aluminum hydroxides gel precipitated by the hydrolysis reaction of $Na_2CO_3$ solution and $Al_2(SO_4)_3$ and $Na_2SO_4$ mixed solution. In this process, optimum synthetic condition of AlO(OH) gel having excellent pore volume as studying the effect of hydrolysis pH on gel precipitates has been studied. Hydrolysis pH brought about numerous changes on crystal morphology, surface area, pore volume and pore size. Physiochemical properties of gel were investigated as using XRD, TEM, TG/DTA, FT-IR and $N_2$ BET method.

Characterisitcs of steam activated carbon made from Youngwall coal (수중기 활성화법으로 제조된 영월 석탄계 활성탄의 특성 연구)

  • 이송우;권태훈;나영수;최동훈;류동춘;송승구
    • Journal of Environmental Science International
    • /
    • v.9 no.4
    • /
    • pp.339-343
    • /
    • 2000
  • Activated carbons were prepared from Youngwall coal by steam activation in this study. The feasibility of the Youngwall coal to commercial activated carbon was examined. The variation of pore structures and the development of porosity in activated carbons were investigated by changing activation conditions in batch type apparatus. The values of BET surface area and adsorption capacity of iodine and methylene blue of the resulting activated carbons were obtained as high as 1,000$m^2$m^2$$/g, 900mg/g, 150$m\ell$/g, respectively. Youngwall activated carbon prepared in this study showed much higher pore volume in pore diameter over 10 than that of commercial reference activated carbon(Ningxia Taihua ZJ-15C) produced from China anthracite.

  • PDF

Characteristic of Pore Structure and Chloride ion Diffusion in Concrete Containing GGBF (고로슬래그미분말 혼합 콘크리트의 공극구조 및 염소이온 확산특성)

  • 문한영;김홍삼;최두선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.365-368
    • /
    • 2002
  • This paper considers transference number in calculating diffusion coefficient of chloride ions of concrete and mercury intrusion porosimetry to investigate the volume and distribution of pore size, respectively, analyzing and discussing the property of resistance to chloride ion of concrete with granulated blast furnace slag. The experimental results show that the diffusion coefficient of chloride ion decreases with the rise of quantity of granulated blast furnace slag and pore structure of concrete with granulated blast furnace slag is different from that of OPC concrete. And from the results of regression analysis, the result showed that the diffusion coefficient of chloride ions is affected by capillary pore above 50nm.

  • PDF

The Relationship between Microstructure and Freezing Thawing Resistance of Polymer-Cement Mortars (폴리머-시멘트 모르타르의 미세구조 동결융합 저항성의 관계)

  • ;;田英治(Eiji Kamada)
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.949-956
    • /
    • 1994
  • In order to investigate the relationship between pore size distribution and freezing-thawing resistance of mortars, polymer-cement mortars were prepared by using styrene-butadiene rubber latex, ethylene-vinyl acetate emulsion and polyacrylic ester emulsion with various polymer-cement ratios at constant flow. From the results of the test, polymer-cement mortars had a good pore size distribution for freezing-thawing resistance compared with unmodified mortars because of having a small pore volume in the pore radius range of 103~104 $\AA$ affecting on the frost damage. And the freezing-thawing resistance of polymer-cement mortars was improved with increasing polymer-cement ratio.

  • PDF

Syunthesis of Silica Aerogel at Ambient Pressure and Characterization (I) (실리카에어로겔의 상압합성 및 특성연구(I))

  • 강신규;최세영
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.12
    • /
    • pp.1394-1402
    • /
    • 1996
  • The Silica gel with the density of 0.2g/cm3 and porosity of 90% was synthesized. The silica wet gel was dried and heat-treated under the ambient pressure after modification of the wet gel surface by TMCS. Specific surface area total pore volume and mean pore radius of dried gel were all increased with increasing heat treatment temperature and confirmed about 1400m2/g, 4.5cc/g and 8 nm respectively after heat treatment above 25$0^{\circ}C$. But the pore size distribution of dried gel was in the range of 1-100nm and was almost indepen-dent of temperature. As the result of external shape pore characteristics and microstructure of gel using SEM similar properties were observed between the silica gel synthesized in this study and the silica aerogel through the super critical drying.

  • PDF