Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.5.441

Preparation and Electrochemical Applications of Pore-filled Ion-exchange Membranes with Well-adjusted Cross-linking Degrees: Part II. Reverse Electrodialysis  

Song, Hyun-Bee (Department of Green Chemical Engineering, Sangmyung University)
Moon, Ha-Neul (Department of Green Chemical Engineering, Sangmyung University)
Kim, Do-Hyeong (Department of Green Chemical Engineering, Sangmyung University)
Kang, Moon-Sung (Department of Green Chemical Engineering, Sangmyung University)
Publication Information
Membrane Journal / v.27, no.5, 2017 , pp. 441-448 More about this Journal
Abstract
In this study, the effects of membrane characteristics on the power generation performance in reverse electrodialysis (RED) have been investigated with pore-filled ion-exchange membranes (PFIEMs) prepared by employing a porous polyethylene substrate and the mixtures of three cross-linking agents. As a result, it was confirmed through the correlation analyses that the cross-linking degree and free volume of the PFIEMs were effectively controlled by mixing the cross-linking agents having different molecular sizes, influencing complexly the electrochemical characteristics of the membranes and the power generation performance in RED. In particular, the pore-filled cation-exchange membranes at the optimum cross-linking conditions exhibited the power generation performance superior to that of the commercial membranes and the pore-filled anion-exchange membranes also showed the excellent performance close to that of the commercial membrane.
Keywords
power generation; reverse electrodialysis; pore-filled ion-exchange membranes; cross-linking agent; free volume;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 G. L. Wick, "Power from salinity gradients", Energy, 3, 95 (1978).   DOI
2 P. Dlugolecki, K. Nymeijer, S. Metz, and M. Wessling, "Current status of ion exchange membranes for power generation from salinity gradients", J. Membr. Sci., 319, 214 (2008).   DOI
3 J. W. Post, H. V. M. Hamelers, and C. J. N. Buisman, "Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system", Environ. Sci. Technol. Lett., 42, 5785 (2008).   DOI
4 J. Veerman, M. Saakes, S. J. Metz, and G. J. Harmsen, "Reverse electrodialysis: Performance of a stack with 50 cells on the mixing of sea and river water", J. Membr. Sci., 327, 136 (2009).   DOI
5 H. Strathmann, "Ion-exchange membrane separation processes", Elsevier, Amsterdam (2004).
6 J. N. Weinstein and F. B. Leitz, "Electric power from differences in salinity: the dialytic battery", Science, 191, 557 (1976).   DOI
7 E. Brauns, "Towards a worldwide sustainable and simultaneous large scale production of renewable energy and potable water through salinity gradient power by combining reversed electrodialysis and solar power", Desalination, 219, 312 (2008).   DOI
8 E. Brauns, "Salinity gradient power by reverse electrodialysis: Effect of model parameters on electrical power output", Desalination, 237, 378 (2009).   DOI
9 J. W. Post, J. Veerman, H. V. M. Hamelers, G. J. W. Euverink, S. J. Metz, K. Nymeijer, and C. J. N. Buisman, "Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis", J. Membr. Sci., 288, 218 (2007).   DOI
10 P. Dlugolecki, A. Gambier, K. Nijmeijer, and M. Wessling, "Practical potential of reverse electrodialysis as process for sustainable energy generation", Environ. Sci. Technol., 43, 6888 (2009).   DOI
11 J. Veerman, M. Saakes, S. J. Metz, and G. J. Harmsen, "Reverse electrodialysis: Performance of a stack with 50 cells on the mixing of sea and river water", J. Membr. Sci., 327, 136 (2009).   DOI
12 E. Guler, R. Elizen, D. A. Vermaas M. Saakes, and K. Nijmeijer, "Performance-determining membrane properties in reverse electrodialysis", J. Membr. Sci., 446, 266 (2013).   DOI
13 A. Daniilidis, R. Herber, and D. A. Vermaas, "Upscale potential and financial feasibility of a reverse electrodialysis power plant", Appl. Energy, 119, 257 (2014).   DOI
14 D.-H. Kim, J.-H. Park, S.-J. Seo, J.-S. Park, S. Jung, Y.-S. Kang, J.-H. Choi, and M.-S. Kang, "Development of thin anion-exchange pore-filled membranes for high diffusion dialysis performance", J. Membr. Sci., 447, 80 (2013).   DOI
15 J. G. Hong and Y. Chen, "Nanocomposite reverse electrodialysis (RED) ion-exchange membranes for salinity gradient power generation", J. Membr. Sci., 460, 139 (2014).   DOI
16 D.-H. Kim and M.-S. Kang, "Preparation and characterizations of ionomer-coated pore-filled ion-exchange membranes for reverse electrodialysis", Membr. J., 26, 43 (2016).   DOI
17 E. Guler, W. V. Baak, M. Saakes, and K. Nijmijer, "Monovalent-ion-selective membranes for reverse electrodialysis", J. Membr. Sci., 455, 254 (2014).   DOI
18 D.-H. Kim, H.-S. Park, S.-J. Sea, J.-S. Park, S.-H. Moon, Y.-W. Choi, Y. S. Jiong, D. H. Kim, and M.-S. Kang, "Facile surface modification of anionexchange membranes for improvement of diffusion dialysis performance", J. Colloid Interface Sci., 416, 19 (2014).   DOI
19 D.-H. Kim, Y.-E. Choi, J.-S. Park, and M.-S. Kang, "Development and application of cation-exchange membranes including chelating resin for efficient heavy-metal ion removal", Membr. J., 27, 129 (2017).   DOI
20 D.-H. Kim, J.-S. Park, and M.-S. Kang, "Controlling water splitting characteristics of anion-exchange membranes by coating imidazolium polymer", Membr. J., 25, 1521 (2015).