DOI QR코드

DOI QR Code

Preparation and Electrochemical Applications of Pore-filled Ion-exchange Membranes with Well-adjusted Cross-linking Degrees: Part II. Reverse Electrodialysis

가교도가 조절된 세공충진 이온교환막의 제조 및 전기화학적 응용: Part II. 역 전기투석

  • Song, Hyun-Bee (Department of Green Chemical Engineering, Sangmyung University) ;
  • Moon, Ha-Neul (Department of Green Chemical Engineering, Sangmyung University) ;
  • Kim, Do-Hyeong (Department of Green Chemical Engineering, Sangmyung University) ;
  • Kang, Moon-Sung (Department of Green Chemical Engineering, Sangmyung University)
  • 송현비 (상명대학교 그린화학공학과) ;
  • 문하늘 (상명대학교 그린화학공학과) ;
  • 김도형 (상명대학교 그린화학공학과) ;
  • 강문성 (상명대학교 그린화학공학과)
  • Received : 2017.10.25
  • Accepted : 2017.10.27
  • Published : 2017.10.31

Abstract

In this study, the effects of membrane characteristics on the power generation performance in reverse electrodialysis (RED) have been investigated with pore-filled ion-exchange membranes (PFIEMs) prepared by employing a porous polyethylene substrate and the mixtures of three cross-linking agents. As a result, it was confirmed through the correlation analyses that the cross-linking degree and free volume of the PFIEMs were effectively controlled by mixing the cross-linking agents having different molecular sizes, influencing complexly the electrochemical characteristics of the membranes and the power generation performance in RED. In particular, the pore-filled cation-exchange membranes at the optimum cross-linking conditions exhibited the power generation performance superior to that of the commercial membranes and the pore-filled anion-exchange membranes also showed the excellent performance close to that of the commercial membrane.

본 연구에서는 다공성 폴리에틸렌 지지체를 기반으로 세 가지 가교제를 혼합 도입한 세공충진 이온교환막을 제조하고 역 전기투석에서 멤브레인의 특성이 발전성능에 미치는 영향을 고찰하였다. 실험 결과, 분자 크기가 다른 가교제를 혼합함으로써 이온교환막의 가교도 및 자유체적이 효과적으로 조절됨을 확인하였으며 상관 분석을 통해 멤브레인의 전기화학적 특성 및 이를 적용한 역 전기투석의 발전성능에 복합적인 영향을 미침을 알 수 있었다. 특히 세공충진 양이온 교환막은 최적 가교조건에서 상용막 대비 동등 이상의 발전 성능을 나타내었으며 음이온 교환막 또한 상용막에 근접하는 우수한 성능을 나타내었다.

Keywords

References

  1. G. L. Wick, "Power from salinity gradients", Energy, 3, 95 (1978). https://doi.org/10.1016/0360-5442(78)90059-2
  2. P. Dlugolecki, K. Nymeijer, S. Metz, and M. Wessling, "Current status of ion exchange membranes for power generation from salinity gradients", J. Membr. Sci., 319, 214 (2008). https://doi.org/10.1016/j.memsci.2008.03.037
  3. J. W. Post, H. V. M. Hamelers, and C. J. N. Buisman, "Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system", Environ. Sci. Technol. Lett., 42, 5785 (2008). https://doi.org/10.1021/es8004317
  4. J. Veerman, M. Saakes, S. J. Metz, and G. J. Harmsen, "Reverse electrodialysis: Performance of a stack with 50 cells on the mixing of sea and river water", J. Membr. Sci., 327, 136 (2009). https://doi.org/10.1016/j.memsci.2008.11.015
  5. H. Strathmann, "Ion-exchange membrane separation processes", Elsevier, Amsterdam (2004).
  6. J. N. Weinstein and F. B. Leitz, "Electric power from differences in salinity: the dialytic battery", Science, 191, 557 (1976). https://doi.org/10.1126/science.191.4227.557
  7. E. Brauns, "Towards a worldwide sustainable and simultaneous large scale production of renewable energy and potable water through salinity gradient power by combining reversed electrodialysis and solar power", Desalination, 219, 312 (2008). https://doi.org/10.1016/j.desal.2007.04.056
  8. E. Brauns, "Salinity gradient power by reverse electrodialysis: Effect of model parameters on electrical power output", Desalination, 237, 378 (2009). https://doi.org/10.1016/j.desal.2008.10.003
  9. J. W. Post, J. Veerman, H. V. M. Hamelers, G. J. W. Euverink, S. J. Metz, K. Nymeijer, and C. J. N. Buisman, "Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis", J. Membr. Sci., 288, 218 (2007). https://doi.org/10.1016/j.memsci.2006.11.018
  10. P. Dlugolecki, A. Gambier, K. Nijmeijer, and M. Wessling, "Practical potential of reverse electrodialysis as process for sustainable energy generation", Environ. Sci. Technol., 43, 6888 (2009). https://doi.org/10.1021/es9009635
  11. J. Veerman, M. Saakes, S. J. Metz, and G. J. Harmsen, "Reverse electrodialysis: Performance of a stack with 50 cells on the mixing of sea and river water", J. Membr. Sci., 327, 136 (2009). https://doi.org/10.1016/j.memsci.2008.11.015
  12. E. Guler, R. Elizen, D. A. Vermaas M. Saakes, and K. Nijmeijer, "Performance-determining membrane properties in reverse electrodialysis", J. Membr. Sci., 446, 266 (2013). https://doi.org/10.1016/j.memsci.2013.06.045
  13. A. Daniilidis, R. Herber, and D. A. Vermaas, "Upscale potential and financial feasibility of a reverse electrodialysis power plant", Appl. Energy, 119, 257 (2014). https://doi.org/10.1016/j.apenergy.2013.12.066
  14. J. G. Hong and Y. Chen, "Nanocomposite reverse electrodialysis (RED) ion-exchange membranes for salinity gradient power generation", J. Membr. Sci., 460, 139 (2014). https://doi.org/10.1016/j.memsci.2014.02.027
  15. D.-H. Kim and M.-S. Kang, "Preparation and characterizations of ionomer-coated pore-filled ion-exchange membranes for reverse electrodialysis", Membr. J., 26, 43 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.1.43
  16. E. Guler, W. V. Baak, M. Saakes, and K. Nijmijer, "Monovalent-ion-selective membranes for reverse electrodialysis", J. Membr. Sci., 455, 254 (2014). https://doi.org/10.1016/j.memsci.2013.12.054
  17. D.-H. Kim, J.-H. Park, S.-J. Seo, J.-S. Park, S. Jung, Y.-S. Kang, J.-H. Choi, and M.-S. Kang, "Development of thin anion-exchange pore-filled membranes for high diffusion dialysis performance", J. Membr. Sci., 447, 80 (2013). https://doi.org/10.1016/j.memsci.2013.07.017
  18. D.-H. Kim, H.-S. Park, S.-J. Sea, J.-S. Park, S.-H. Moon, Y.-W. Choi, Y. S. Jiong, D. H. Kim, and M.-S. Kang, "Facile surface modification of anionexchange membranes for improvement of diffusion dialysis performance", J. Colloid Interface Sci., 416, 19 (2014). https://doi.org/10.1016/j.jcis.2013.10.013
  19. D.-H. Kim, J.-S. Park, and M.-S. Kang, "Controlling water splitting characteristics of anion-exchange membranes by coating imidazolium polymer", Membr. J., 25, 1521 (2015).
  20. D.-H. Kim, Y.-E. Choi, J.-S. Park, and M.-S. Kang, "Development and application of cation-exchange membranes including chelating resin for efficient heavy-metal ion removal", Membr. J., 27, 129 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.2.129