• Title/Summary/Keyword: Population balance

Search Result 266, Processing Time 0.022 seconds

Evaluation of the Two Class Population Balance Equation for Predicting the Bimodal Flocculation of Cohesive Sediments in Turbulent Flow (난류조건에서의 점착성 유사 이군집 응집 모형 적용성 평가)

  • Lee, Byung Joon;Toorman, E.A.
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.3
    • /
    • pp.233-243
    • /
    • 2015
  • The bimodal flocculation of cohesive sediments in water environments describes the aggregation and breakage process developing a bimodal floc size distribution with dense flocculi and floppy flocs. A two class population balance equation (TCPBE) was tested for simulating the bimodal flocculation by a model-data fitting analysis with two sets of experimental data (low and high turbulent flows) from 1-D flocculation-settling column tests. In contrast to the Single-Class PBE (SCPBE), the TCPBE could simulate interactions between flocculi and flocs and the flocculation mechanism by differential settling in a low turbulent flow. Also, the TCPBE could perform the same quality of simulation as the elaborate Multi-Class PBE (MCPBE), with a small number of floc size classes and differential equations. Thus, the TCPBE was proven to be the simplest model that is capable of simulating the bimodal flocculation of cohesive sediments in water environments and water, wastewater treatment systems.

Numerical Simulation of Turbulence-Induced Flocculation and Sedimentation in a Flocculant-Aided Sediment Retention Pond

  • Lee, Byung Joon;Molz, Fred
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.165-174
    • /
    • 2014
  • A model combining multi-dimensional discretized population balance equations with a computational fluid dynamics simulation (CFD-DPBE model) was developed and applied to simulate turbulent flocculation and sedimentation processes in sediment retention basins. Computation fluid dynamics and the discretized population balance equations were solved to generate steady state flow field data and simulate flocculation and sedimentation processes in a sequential manner. Up-to-date numerical algorithms, such as operator splitting and LeVeque flux-corrected upwind schemes, were applied to cope with the computational demands caused by complexity and nonlinearity of the population balance equations and the instability caused by advection-dominated transport. In a modeling and simulation study with a two-dimensional simplified pond system, applicability of the CFD-DPBE model was demonstrated by tracking mass balances and floc size evolutions and by examining particle/floc size and solid concentration distributions. Thus, the CFD-DPBE model may be used as a valuable simulation tool for natural and engineered flocculation and sedimentation systems as well as for flocculant-aided sediment retention ponds.

System Dynamics Modeling for Management of Roe Deer Population in Jejudo (제주도 한라산 노루 적정 개체수에 관한 시스템 다이내믹스 모델링)

  • Kim, Doa-Hoon;Hong, Young-Kyo
    • Korean System Dynamics Review
    • /
    • v.9 no.2
    • /
    • pp.45-75
    • /
    • 2008
  • Roe Deer has been preserved for 25 years by the local government and the residents in Jejudo. However, the damage and harm of crops of the residents by Roe Deer are increasing as well. So, some experts worry about the unstability of ecosystem in Mt. Halla where Roe Deer live. This paper discuss the suitable number of Roe Deer population in Jejudo to protect the ecosystem in Mt. Halla and minimize the damage of residents in Jejudo. With system dynamics modeling and simulation, the population of Roe Deer at present is estimated about 2,300. However, the population of Roe Deer stays 'unstable balance'. So, a little change such as poaching and the increase of wild dogs may make the balance of ecosystem broken. According to the result of policy test simulation, we should keep on watching the poaching and maintain the number of wild dogs at about 100, so that the ecosystem in Jejudo can be stable. To reduce the moving of Roe Deer to low region, moreover, we should protect the Mt. Halla which is Roe Deer's habitat. If we are indifferent about these efforts, the ecosystem of Roe Deer in Mt. Halla will be ruined.

  • PDF

Numerical Modeling of Soot Formation in $C_2H_4$/Air Turbulent Non-premixed Flames ($C_2H_4$/Air 비예혼합 난류화염의 매연생성 모델링)

  • Kim, Tae-Hoon;Woo, Min-O;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.22-28
    • /
    • 2010
  • The Direct Quadrature Method of Moments (DQMOM) has been presented for the solution of population balance equation in the wide range of the multi-phase flows. This method has the inherently interesting features which can be easily applied to the multi-inner variable equation. In addition, DQMOM is capable of easily coupling the gas phase with the discrete phases while it requires the relatively low computational cost. Soot inception, subsequent aggregation, surface growth and oxidation are described through a population balance model solved with the DQMOM for soot formation. This approach is also able to represent the evolution of the soot particle size distribution. The turbulence-chemistry interaction is represented by the laminar flamelet model together with the presumed PDF approach and the spherical harmonic P-1 approximation is adopted to account for the radiative heat transfer.

Comparison Kinematic Patterns between the Star Excursion Balance Test and Y-Balance Test in Elite Athletes

  • Ko, Jupil
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.3
    • /
    • pp.165-169
    • /
    • 2017
  • Objective: The Star Excursion Balance Test (SEBT) and Y-Balance Test (YBT) have been commonly applied to measure dynamic postural stability ability. These two tests are utilized interchangeably in various settings. However, they could in fact require different movements to assess dynamic postural stability, as one uses a platform and different measuring techniques than the other. The purpose of this study was to determine if there was a significant difference in the kinematic patterns in physically active population while performing the SEBT and the YBT. Method: Seventy participants performed in the Anterior (AN), Posteromedial (PM), and Posterolateral (PL) directions of the SEBT and the YBT. The kinematics of hip, knee, and ankle in sagittal plane was calculated and analyzed. Paired-sample t-tests were performed to compare joint angular displacement in the ankle, knee, and hip between the SEBT and the YBT. Results: Significant differences in angular displacement at the hip, knee, and ankle joints in the sagittal plane between performance on the SEBT and on the YBT were observed. Conclusion: Clinicians and researchers should not apply these dynamic postural control tasks interchangeably from one task to another. There appear to be kinematic pattern differences between tests in healthy physical active population.

Knee-driven many-objective sine-cosine algorithm

  • Hongxia, Zhao;Yongjie, Wang;Maolin, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.335-352
    • /
    • 2023
  • When solving multi-objective optimization problems, the blindness of the evolution direction of the population gradually emerges with the increase in the number of objectives, and there are also problems of convergence and diversity that are difficult to balance. The many- objective optimization problem makes some classic multi-objective optimization algorithms face challenges due to the huge objective space. The sine cosine algorithm is a new type of natural simulation optimization algorithm, which uses the sine and cosine mathematical model to solve the optimization problem. In this paper, a knee-driven many-objective sine-cosine algorithm (MaSCA-KD) is proposed. First, the Latin hypercube population initialization strategy is used to generate the initial population, in order to ensure that the population is evenly distributed in the decision space. Secondly, special points in the population, such as nadir point and knee points, are adopted to increase selection pressure and guide population evolution. In the process of environmental selection, the diversity of the population is promoted through diversity criteria. Through the above strategies, the balance of population convergence and diversity is achieved. Experimental research on the WFG series of benchmark problems shows that the MaSCA-KD algorithm has a certain degree of competitiveness compared with the existing algorithms. The algorithm has good performance and can be used as an alternative tool for many-objective optimization problems.

Parametric study of population balance model on the DEBORA flow boiling experiment

  • Aljosa Gajsek;Matej Tekavcic;Bostjan Koncar
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.624-635
    • /
    • 2024
  • In two-fluid simulations of flow boiling, the modeling of the mean bubble diameter is a key parameter in the closure relations governing the intefacial transfer of mass, momentum, and energy. Monodispersed approach proved to be insufficient to describe the significant variation in bubble size during flow boiling in a heated pipe. A population balance model (PBM) has been employed to address these shortcomings. During nucleate boiling, vapor bubbles of a certain size are formed on the heated wall, detach and migrate into the bulk flow. These bubbles then grow, shrink or disintegrate by evaporation, condensation, breakage and aggregation. In this study, a parametric analysis of the PBM aggregation and breakage models has been performed to investigate their effect on the radial distribution of the mean bubble diameter and vapor volume fraction. The simulation results are compared with the DEBORA experiments (Garnier et al., 2001). In addition, the influence of PBM parameters on the local distribution of individual bubble size groups was also studied. The results have shown that the modeling of aggregation process has the largest influence on the results and is mainly dictated by the collisions due to flow turbulence.

Effects of Mental Practice on Balance Ability and Fall Efficacy in Dwelling Elderly Population: Single Subject Design (상상연습이 노인의 균형 능력과 낙상효능감에 미치는 영향 : 단일대상연구)

  • Chung, Jun-Chul;Jung, Hae-Yoon;Lee, Chang-Dae;Yoo, Eun-Young
    • The Journal of Korean society of community based occupational therapy
    • /
    • v.5 no.2
    • /
    • pp.31-42
    • /
    • 2015
  • Objective : The aim of this study is to prove the effects of mental practice in balance ability of elderly population, and to investigate the possibility of application as an effective intervention method for fall prevention. Methods : This study provided mental practice to 3 subjects over 65 years old who have experienced fall, but do not have cognitive dysfunctions and independent in gait without any use of assistive devices from July to October, 2013. Within the individual case study, 4 sessions of initial baseline process (A), 5 sessions of mental practice (B), 4 sessions of re-initial baseline process (A') were proceeded using ABA design. Independent variable used mental practice for enhancing balance ability and fall efficacy in elderly population, and dependent variable were Berg Balance Scale (BBS) to find out the change in overall balance ability, Fall Efficacy Scale (FES) to see the change in fall efficacy, One-Leg Standing test(OLS), and Timed Up and Go Test (TUG) to determine the changes in both static and dynamic balance. Analysis of the results were provided via mean value and graph. Results : After the application of mental practice method, all of the subjects have shown increase in fall efficacy baseline values, and in addition, overall balance ability and both static and dynamic balances either increased or maintained. Conclusion : This study demonstrated that mental practice has positive effects on fall efficacy improvement and maintenance in elderly, thereby suggesting mental practice for fall prevention in elderly populations.

The effect of backward walking training on balance, balance confidence and falls efficacy in patients with acute stroke: A pilot randomized controlled trial (후방 보행훈련이 급성기 뇌졸중 환자의 균형, 균형 자신감, 낙상 효능에 미치는 영향: 무작위 대조군 예비연구)

  • Jung, kyeoung-Man
    • Journal of Korean Physical Therapy Science
    • /
    • v.28 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • Background: The requirements for postural and motor control in backward walking training (BWT) may improve balance and walking speed in patients with acute stroke. The aim of this study was to analyze the effect of BWT on balance, balance confidence, and fall efficacy in this population. Design: Randomized controlled pilot trial. Methods: This study included 14 subjects with acute stroke (onset of illness less than one month). They were randomly allocated to a BWT (n=7) or forward walking training (n=7) group and observed five times in a week for a period of two weeks. Measurements were taken before and after the experiment using the Berg balance scale (BBS), Activities-specific balance confidence scale (ABC), and Fall efficacy scale (FES). Results: The BBS, ABC and FES scores obtained in both groups after the experiment were significantly higher than those before the experiment (p<0.05). In addition, the BBS, ABC, and FES scores in the experimental group were significantly higher than those in the control group (p<0.05). Conclusion: These findings indicate that BWT improved balance and balance confidence and decreased the risks of fall in patients with acute stroke. Further study is needed to better understand the effects of backward walking in acute stroke patients.