Browse > Article
http://dx.doi.org/10.4491/eer.2014.19.2.165

Numerical Simulation of Turbulence-Induced Flocculation and Sedimentation in a Flocculant-Aided Sediment Retention Pond  

Lee, Byung Joon (Constructional and Environmental Engineering, Kyungpook National University)
Molz, Fred (Environmental Engineering & Earth Sciences, Clemson University)
Publication Information
Environmental Engineering Research / v.19, no.2, 2014 , pp. 165-174 More about this Journal
Abstract
A model combining multi-dimensional discretized population balance equations with a computational fluid dynamics simulation (CFD-DPBE model) was developed and applied to simulate turbulent flocculation and sedimentation processes in sediment retention basins. Computation fluid dynamics and the discretized population balance equations were solved to generate steady state flow field data and simulate flocculation and sedimentation processes in a sequential manner. Up-to-date numerical algorithms, such as operator splitting and LeVeque flux-corrected upwind schemes, were applied to cope with the computational demands caused by complexity and nonlinearity of the population balance equations and the instability caused by advection-dominated transport. In a modeling and simulation study with a two-dimensional simplified pond system, applicability of the CFD-DPBE model was demonstrated by tracking mass balances and floc size evolutions and by examining particle/floc size and solid concentration distributions. Thus, the CFD-DPBE model may be used as a valuable simulation tool for natural and engineered flocculation and sedimentation systems as well as for flocculant-aided sediment retention ponds.
Keywords
Computational fluid dynamics; Flocculation; Modeling; Population balance equation; Sedimentation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Timin T, Esmail MN. A comparative study of central and upwind difference schemes using the primitive variables. Int. J. Numer. Methods Fluids 1983;3:295-305.   DOI   ScienceOn
2 LeVeque RJ. High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal. 1996;33:627-665.   DOI   ScienceOn
3 Bushell GC, Yan YD, Woodfield D, Raper J, Amal R. On techniques for the measurement of the mass fractal dimension of aggregates. Adv. Colloid Interface Sci. 2002;95:1-50.   DOI   ScienceOn
4 Turchiuli C, Fargues C. Influence of structural properties of alum and ferric flocs on sludge dewaterability. Chem. Eng. J. 2004;103:123-131.   DOI   ScienceOn
5 Hinds WC. Aerosol technology: properties, behavior, and measurement of airborne particles, 2nd ed. New York: John Wiley & Sons Inc. 1999.
6 Strogatz SH. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Reading: Perseus Books Publishing. 1994.
7 Bungartz H, Wanner SC. Significance of particle interaction to the modelling of cohesive sediment transport in rivers. Hydrol. Process. 2004;18:1685-1702.   DOI   ScienceOn
8 Winterwerp JC. On the flocculation and settling velocity of estuarine mud. Cont.Shelf Res. 2002;22:1339-1360.   DOI   ScienceOn
9 Maggi F, Mietta F, Winterwerp JC. Effect of variable fractal dimension on the floc size distribution of suspended cohesive sediment. J. Hydrol. 2007;343:43-55.   DOI   ScienceOn
10 Adachi Y. Dynamic aspects of coagulation and flocculation. Adv. Colloid Interface Sci. 1995;56:1-31.   DOI   ScienceOn
11 Miyahara K, Adachi Y, Nakaishi K, Ohtsubo M. Settling velocity of a sodium montmorillonite floc under high ionic strength. Colloids Surf. A Physicochem. Eng. Asp. 2002;196:87-91.   DOI   ScienceOn
12 Ding A, Hounslow MJ, Biggs CA. Population balance modelling of activated sludge flocculation: investigating the size dependence of aggregation, breakage and collision efficiency. Chem. Eng. Sci. 2006;61:63-74.   DOI   ScienceOn
13 Parker DS, Kaufman WJ, Jenkins D. Floc breakup in turbulent flocculation processes. J. Sanit. Eng. Div. 1972;98:79-99.
14 Langseth JO, Tveito A, Winther R. On the convergence of operator splitting applied to conservation laws with source terms. SIAM J. Numer. Anal. 1996;33:843-863.   DOI   ScienceOn
15 Rogers SE, Kwak D. An upwind differencing scheme for the incompressible Navier-Strokes equations. Washington, DC: National Aeronautics and Space Administration; 1988.
16 Aro CJ, Rodrigue GH, Rotman DA. A high performance chemical kinetics algorithm for 3-D atmospheric models. Int. J. High Perform. Comput. Appl. 1999;13:3-15.   DOI   ScienceOn
17 Badrot-Nico F, Brissaud F, Guinot V. A finite volume upwind scheme for the solution of the linear advection-diffusion equation with sharp gradients in multiple dimensions. Adv. Water Resour. 2007;30:2002-2025.   DOI   ScienceOn
18 Durran DR. Numerical methods for wave equations in geophysical fluid dynamics. New York: Springer; 1999.
19 Alhumaizi K. Comparison of finite difference methods for the numerical simulation of reacting flow. Comput. Chem. Eng. 2004;28:1759-1769.   DOI   ScienceOn
20 White FM. Viscous fluid flow. 2nd ed. New York: McGraw-Hill; 1991.
21 Lian G, Moore S, Heeney L. Population balance and computational fluid dynamics modelling of ice crystallisation in a scraped surface freezer. Chem. Eng. Sci. 2006;61:7819-7826.   DOI   ScienceOn
22 Schwarzer HC, Schwertfirm F, Manhart M, Schmid HJ, Peukert W. Predictive simulation of nanoparticle precipitation based on the population balance equation. Chem. Eng. Sci. 2006;61:167-181.   DOI   ScienceOn
23 Stokes GG. Mathematical and physical papers (Vol. 1). Cambridge: Cambridge University Press; 1880.
24 Brown PP, Lawler DF. Sphere drag and settling velocity revisited. J. Environ. Eng. 2003;129:222-231.   DOI   ScienceOn
25 Chakraborti RK, Atkinson JF, Van Benschoten JE. Characterization of alum floc by image analysis. Environ. Sci. Technol. 2000;34:3969-3976.   DOI   ScienceOn
26 Jiang Q, Logan BE. Fractal dimensions of aggregates determined from steady-state size distributions. Environ. Sci. Technol. 1991;25:2031-2038.   DOI
27 Johnson CP, Li X, Logan BE. Settling velocities of fractal aggregates. Environ. Sci. Technol. 1996;30:1911-1918.   DOI   ScienceOn
28 Spicer PT, Pratsinis SE, Raper J, Amal R, Bushell G, Meesters G. Effect of shear schedule on particle size, density, and structure during flocculation in stirred tanks. Powder Technol. 1998;97:26-34.   DOI   ScienceOn
29 Chakraborti RK, Gardner KH, Atkinson JF, Van Benschoten JE. Changes in fractal dimension during aggregation. Water Res. 2003;37:873-883.   DOI   ScienceOn
30 McGraw R. Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci. Technol. 1997;27:255-265.   DOI   ScienceOn
31 Somasundaran P, Runkana V. Modeling flocculation of colloidal mineral suspensions using population balances. Int. J. Miner. Process. 2003;72:33-55.   DOI   ScienceOn
32 Rahmani NH, Dabros T, Masliyah JH. Evolution of asphaltene floc size distribution in organic solvents under shear. Chem. Eng. Sci. 2004;59:685-697.   DOI   ScienceOn
33 Prat OP, Ducoste JJ. Modeling spatial distribution of floc size in turbulent processes using the quadrature method of moment and computational fluid dynamics. Chem. Eng. Sci. 2006;61:75-86.   DOI   ScienceOn
34 Marchisio DL, Vigil RD, Fox RO. Implementation of the quadrature method of moments in CFD codes for aggregation-breakage problems. Chem. Eng. Sci. 2003;58:3337-3351.   DOI   ScienceOn
35 Runkana V, Somasundaran P, Kapur PC. A population balance model for flocculation of colloidal suspensions by polymer bridging. Chem. Eng. Sci. 2006;61:182-191.   DOI   ScienceOn
36 Lee DG, Bonner JS, Garton LS, Ernest AN, Autenrieth RL. Modeling coagulation kinetics incorporating fractal theories: a fractal rectilinear approach. Water Res. 2000;34:1987-2000.   DOI   ScienceOn
37 Fox RO. Computational models for turbulent reacting flows. Cambridge: Cambridge University Press; 2003.
38 Kumar S, Ramkrishna D. On the solution of population balance equations by discretization: I. A fixed pivot technique. Chem. Eng. Sci. 1996;51:1311-1332.   DOI   ScienceOn
39 Ramkrishna D, Mahoney AW. Population balance modeling: promise for the future. Chem. Eng. Sci. 2002;57:595-606.   DOI   ScienceOn
40 Gowdy W, Iwinski SR, Woodstock G. Removal efficiencies of polymer enhanced dewatering systems. Proceedings of the 9th Biennial Conference on Stormwater Research & Watershed Management; 2007 May 2-3; Orlando, FL.
41 Kang JH, Li Y, Lau SL, Kayhanian M, Stenstrom MK. Particle destabilization in highway runoff to optimize pollutant removal. J. Environ. Eng. 2007;133:426-434.   DOI   ScienceOn
42 Akan AO, Houghtalen RJ. Urban hydrology, hydraulics, and stormwater quality. Hoboken: John Wiley & Sons; 2003.
43 Smoluchowski MV. Versuch einer mathematischen theorie der koagulationskinetik kolloider Losungen. Z. Phys. Chem. 1917;92:129-168.
44 Spicer PT, Pratsinis SE. Coagulation and fragmentation: universal steady-state particle-size distribution. AIChE J. 1996;42:1612-1620.   DOI   ScienceOn
45 Lawler DF, Wilkes DR. Flocculation model testing; particle sizes in a softening plant. J. Am. Water Works Assoc. 1984;76:90-97.
46 Hounslow MJ, Ryall RL, Marshall VR. A discretized population balance for nucleation, growth, and aggregation. AIChE J. 1988;34:1821-1832.   DOI   ScienceOn
47 Spicer PT, Pratsinis SE. Shear-induced flocculation: the evolution of floc structure and the shape of the size distribution at steady state. Water Res. 1996;30:1049-1056.   DOI
48 Flesch JC, Spicer PT, Pratsinis SE. Laminar and turbulent shear-induced flocculation of fractal aggregates. AIChE J. 1999;45:1114-1124.   DOI   ScienceOn
49 Sterling MC Jr, Bonner JS, Ernest AN, Page CA, Autenrieth RL. Application of fractal flocculation and vertical transport model to aquatic sol-sediment systems. Water Res. 2005;39:1818-1830.   DOI   ScienceOn
50 Marchisio DL, Vigil RD, Fox RO. Quadrature method of moments for aggregation-breakage processes. J. Colloid Interface Sci. 2003;258:322-334.   DOI   ScienceOn
51 Harper HH. Current research and trends in alum treatment of stormwater runoff. Proceedings of the 9th Biennial Conference on Stormwater Research & Watershed Management; 2007 May 2-3; Orlando, FL.
52 Heath AR, Koh PT. Combined population balance and CFD modelling of particle aggregation by polymeric flocculant. Proceedings of the 3rd International Conference on CFD in the Minerals and Process Industries; 2003 Dec 10-12; Melbourne, Australia.