• 제목/요약/키워드: Pond system

검색결과 219건 처리시간 0.023초

경량기포혼합 준설토의 강도특성 (Strength Characteristics of Light-Weight Cement mind Marine Clay with Foam)

  • 박건태;김주철;윤길림;이종규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.483-490
    • /
    • 2002
  • A massive amount of marine clay produced as dredging of coast and sea bed is often dumped in open sea and filled in pond. The treatment of marine clay demand a large area and make fatal environmental problems for echo system. This research work intend to manufacture a light-weight landfill materials which are produced by mixing the dredged marine clay with various amount cement and foam. An extensive Uniaxial and Triaxial compression test are carried out to investigate the strength characteristics of the light-weight cement mixed marine clay with foam under various test conditions. The results indicated that the required unit weight has been achieved with negligible change after 28days curing time in water. It is also recognized that the compressive strength of light-weight landfill materials linearly decrease with increasing initial water content, and the rate of strength decrease with increasing initial water content in water curing was smaller than that of air curing Futhermore, the rate of strength decreased with increasing initial water content, however, the rate become smaller as cement content increased.

  • PDF

DEVELOPMENT OF THE ENIGMA FUEL PERFORMANCE CODE FOR WHOLE CORE ANALYSIS AND DRY STORAGE ASSESSMENTS

  • Rossiter, Glyn
    • Nuclear Engineering and Technology
    • /
    • 제43권6호
    • /
    • pp.489-498
    • /
    • 2011
  • UK National Nuclear Laboratory's (NNL's) version of the ENIGMA fuel performance code is described, including details of the development history, the system modelled, the key assumptions, the thermo-mechanical solution scheme, and the various incorporated models. The recent development of ENIGMA in the areas of whole core analysis and dry storage applications is then discussed. With respect to the former, the NEXUS code has been developed by NNL to automate whole core fuel performance modelling for an LWR core, using ENIGMA as the underlying fuel performance engine. NEXUS runs on NNL's GEMSTONE high performance computing cluster and utilises 3-D core power distribution data obtained from the output of Studsvik Scandpower's SIMULATE code. With respect to the latter, ENIGMA has been developed such that it can model the thermo-mechanical behaviour of a given LWR fuel rod during irradiation, pond cooling, drying, and dry storage - this involved: (a) incorporating an out-of-pile clad creep model for irradiated Zircaloy-4; (b) including the ability to simulate annealing out of the clad irradiation damage; (c) writing of additional post-irradiation output; (d) several other minor modifications to allow modelling of post-irradiation conditions.

Effect of interflow and baseflow on nutrient runoff characteristics in agricultural area

  • Lee, Yunhee;Oa, Seong-Wook
    • Membrane and Water Treatment
    • /
    • 제10권1호
    • /
    • pp.83-89
    • /
    • 2019
  • The most common way of reducing non-point source pollutants from agricultural areas is the installation of reservoirs. However, this method is only effective for surface runoff of settleable pollutants. This study was conducted to estimate the effect of interflow, baseflow, and surface runoff on pollutant runoff in a small agricultural catchment. Runoff of organic matters, SS, and T-P were directly proportional to the rainfall variation, while ammonia and nitrate were inversely proportional to the amount of rainfall. The interflow and baseflow was only 46% of the total stream flow, but the nitrate load reached 78%. The interflow as a nutrient transport pathway should be considered for managing a stream water quality. It requires careful attention and appropriate control methodology such as vegetation to consider the influence by interflow. The reservoir as a dry extended detention pond (DEDP) has function of nutrient captor.

Maintenance of Waterscape Facilities at Garden shows in Korea

  • Lee, Kyong-bok;Hong, Kwang-pyo;LEE, Hyuk-jae
    • International Journal of Advanced Culture Technology
    • /
    • 제8권4호
    • /
    • pp.189-199
    • /
    • 2020
  • We aimed to understand various problems identified at waterscape facilities of gardens built at garden shows in Korea. The main purpose of the study is to understand which parts of waterscape facility built in gardens at garden shows are causing problems and whether these problems can be traced back from garden design phase or from local communities in charge of maintenance. Furthermore, we examined if such problems get more aggregated as time passes by and different garden shows have different types of problems. In this study, types of waterscape facilities examined are pond, waterway, wall fountain, water glass, trough, mist, Cascade, fountain, rain garden, waterfall. An analysis of the maintenance status of waterscape facilities introduced in the existing gardens confirmed that problems could arise in two main respects. One is due to poor maintenance by the organizers of the garden show, and the other is due to the poor design of waterscape facilities by the garden designer.

A Laboratory-Scale Study of the Applicability of a Halophilic Sediment Bioelectrochemical System for in situ Reclamation of Water and Sediment in Brackish Aquaculture Ponds: Effects of Operational Conditions on Performance

  • Pham, Hai The;Vu, Phuong Ha;Nguyen, Thuy Thu Thi;Bui, Ha Viet Thi;Tran, Huyen Thanh Thi;Tran, Hanh My;Nguyen, Huy Quang;Kim, Byung Hong
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권10호
    • /
    • pp.1607-1623
    • /
    • 2019
  • Sediment bioelectrochemical systems (SBESs) can be integrated into brackish aquaculture ponds for in-situ bioremediation of the pond water and sediment. Such an in-situ system offers advantages including reduced treatment cost, reusability and simple handling. In order to realize such an application potential of the SBES, in this laboratory-scale study we investigated the effect of several controllable and uncontrollable operational factors on the in-situ bioremediation performance of a tank model of a brackish aquaculture pond, into which a SBES was integrated, in comparison with a natural degradation control model. The performance was evaluated in terms of electricity generation by the SBES, Chemical oxygen demand (COD) removal and nitrogen removal of both the tank water and the tank sediment. Real-life conditions of the operational parameters were also experimented to understand the most close-to-practice responses of the system to their changes. Predictable effects of controllable parameters including external resistance and electrode spacing, similar to those reported previously for the BESs, were shown by the results but exceptions were observed. Accordingly, while increasing the electrode spacing reduced the current densities but generally improved COD and nitrogen removal, increasing the external resistance could result in decreased COD removal but also increased nitrogen removal and decreased current densities. However, maximum electricity generation and COD removal efficiency difference of the SBES (versus the control) could be reached with an external resistance of $100{\Omega}$, not with the lowest one of $10{\Omega}$. The effects of uncontrollable parameters such as ambient temperature, salinity and pH of the pond (tank) water were rather unpredictable. Temperatures higher than $35^{\circ}C$ seemed to have more accelaration effect on natural degradation than on bioelectrochemical processes. Changing salinity seriously changed the electricity generation but did not clearly affect the bioremediation performance of the SBES, although at 2.5% salinity the SBES displayed a significantly more efficient removal of nitrogen in the water, compared to the control. Variation of pH to practically extreme levels (5.5 and 8.8) led to increased electricity generations but poorer performances of the SBES (vs. the control) in removing COD and nitrogen. Altogether, the results suggest some distinct responses of the SBES under brackish conditions and imply that COD removal and nitrogen removal in the system are not completely linked to bioelectrochemical processes but electrochemically enriched bacteria can still perform non-bioelectrochemical COD and nitrogen removals more efficiently than natural ones. The results confirm the application potential of the SBES in brackish aquaculture bioremediation and help propose efficient practices to warrant the success of such application in real-life scenarios.

도시유출모형과 홍수범람모형을 연계한 내수침수 적용성 평가 (A Study on Urban Inundation Prediction Using Urban Runoff Model and Flood Inundation Model)

  • 탁용훈;김재동;김영도;강부식
    • 대한토목학회논문집
    • /
    • 제36권3호
    • /
    • pp.395-406
    • /
    • 2016
  • 도시화로 인한 인구집중 및 개발 집중현상으로 하천변 저지대 및 지하공간 사용이 증가하였고, 불투수층이 증가하여 도시유역의 배수체계는 우수관거에 의존하고 있다. 이러한 변화로 인한 우수관거의 저류용량 부족 및 외수위의 영향으로 인한 도심지 역류 현상으로 인한 침수피해가 발생하고 있다. 하지만 기존의 홍수범람에 관한 연구는 대부분 외수범람과 내수침수를 유기적으로 연결하지 못하고 있다. 본 연구에서는 상습침수가 발생하는 도시유역에 대하여 도시유역 유출특성을 고려한 홍수의 정확한 예측을 위해 강우분석 및 외수위를 고려하고, 도시유출모형인 SWMM 모형을 이용하여 하수관거의 월류를 분석하였고, 이 결과를 홍수범람해석 모형과 연계하여 도시유역에서의 집중호우 발생시 침수해석을 실시하여 수방시설물의 홍수배제 효율을 분석하였다. SWMM 모형의 적용결과 외수위영향에 따른 원활한 내수배제가 불가능 한 것으로 나타났고, 관거 월류량이 많아진 것으로 나타났다. 월류된 우수가 지면을 따라 흐를 경우 저지대의 침수가 예상되고, 월류량이 많은 맨홀을 주요맨홀로 선정하였고, 월류수 저감을 위한 방안으로 주요 맨홀의 인근 지역에 저류지를 설치하는 방안과 각 맨홀들을 연결하는 관거를 확대하는 방안을 설정하였다. 월류 저감 시나리오 적용 결과 저류지 설치시 월류량의 45%, 관거 확대시 33~64%의 저감효과를 보였다. SWMM 모형의 결과를 이용하여 홍수범람해석 모형을 모의한 결과 지표경사와 도로를 따라 맨홀 월류수가 모여 침수현상을 발생시키는 것으로 나타났으며, 관거 확대 적용시 침수면적이 19.6%, 60.5% 줄어든 것으로 나타났다.

얕은 연못에서 수위변동에 따른 담수 어류 피난처 확보를 위한 실험적 접근 (An Experimental Approach to Secure Freshwater Fish Shelter according to the Water Level Fluctuations in a Shallow Pond)

  • 안창혁;주진철;이새로미;오주현;안호상;송호면
    • 대한환경공학회지
    • /
    • 제35권9호
    • /
    • pp.666-674
    • /
    • 2013
  • 담수생태계에서 갈수기가 지속되면 다양한 물리적 장애가 발생한다. 이 시기는 어류의 생태 유지용수가 부족하여, 이동이 일어남에 따라 새로운 피난처 및 서식처가 요구된다. 이러한 문제를 해결하기 위해 본 연구에서는 실증규모의 실험시설을 구축하였으며, 수위변화와 어류 피난처의 관계를 분석하였다. ADP (artificial deep pool)는 본 연구에서 제안된 인공적인 깊은 웅덩이이다. 본 시설을 실증규모의 test-bed 실험구에 적용하여 모니터링 한 결과, 수위변화에 따른 어류 개체수는 실험연못의 수심 0.5 m에서 가장 높게 나타났다. 하지만 ADP에서는 낮은 외부 수위 조건(<0.3 m)에서 단위면적당 어류 개체수가 증가하였고, 실험구의 총 어류 군집을 보존하는데 기여하였다. 또한, ADP 내부의 수온과 DO는 외부보다 낮게 조성되었지만, 어류는 지속적으로 서식하였다. 이 결과와 관련하여, ADP 내부는 WCS, OS, SS, TS 등이 높은 효율적인 정수생태계임을 나타내었다. 더욱이, ADP 내부의 종풍부도는 Acheilognathus koreensis (A. koreensis), Carassius carassius (C. carassius)와 같은 WCS가 높은 비율로 측정되었다. 결국, 수위가 낮게 형성되는 동안 어류는 서식환경의 교란에 의해 수심이 깊은 곳으로 피난하였고, 본 연구 결과를 종합하여 볼 때, ADP는 정수생태계에 적합한 어류 피난 및 서식처로 활용이 가능함을 시사하였다.

인회석 배수시스템을 이용한 산성수의 철 및 알루미늄 제거에 대한 현장경험 (Field Experiment on Iron and Aluminum Removal from Acid Mine Drainage Using an Apatite Drain System)

  • 최정찬
    • 자원환경지질
    • /
    • 제29권3호
    • /
    • pp.315-323
    • /
    • 1996
  • 인회석 배수로가 1994년 9월 30일 미국 인디아나주 중서부에 위치한 Green Valley 폐탄광에 건설되었다. 현장설치의 일차적인 목적은 현장조건에서 산성수에 대한 인회석 배수로의 장기적인 처리능력을 평가하는 데 있다. 이 배수로는 실내실험결과에 따라 설계되었는데 연장 9m, 폭 3.3m, 심도 0.75m이며,95mm~30번 채 크기의 인회석광 (francolite)으로 채워져 있고 복구된 폐석더미로 부터 흘러나오는 산성수가 유입되게 되어 있다. 본 배수로는 폭우 및 실트의 퇴적으로 인한 손상을 막기 위해 석회석 자갈과 filter fabric으로 덮여져 있다. 본 배수로는 플로리다주의 인광석광산에서 채광된 50톤의 인회석으로 채워져 있다. 인회석은 산성수내의 첼 최대 4,200 mg/l, 알루미늄 최대 830 mg/l, 황산염 최대 13,430 mg/l를 제거하였다. 산도는 거의 일정하였으며 3.1에서 4.3까지 변화를 보였다. 배수로 하류에서 측정한 유출량은 3~4.5 l/m였다. 철 및 알루미늄 인산염 침전물은 노란색 및 흰색 부유성 입자인데 침전못에 계속적으로 퇴적되었다.

  • PDF

유기농업단지 주요경관요소의 물리적 관리방안에 관한 연구 (A Study on the Morphological Management of Major Landscape Elements in Organic Farming)

  • 안필균;공민재;이상민;김상범;조정래;김남춘;신지훈
    • 농촌계획
    • /
    • 제26권2호
    • /
    • pp.107-116
    • /
    • 2020
  • Up to date, the majority research on the major landscape elements in organic farming has been mainly focused on the practice of seeking efficiency. The problem is that this type of study contributes to polluting the agricultural environment and damaging the ecological circulation system. As an alternative, there is a growing body of research on organic farming, but it is not widely applied that research on how to manage the landscape considering the scenic characteristics of farming villages practicing organic farming. Therefore, this study was carried out in the conservative aspects of rural landscapes in order to effectively manage the landscape of organic agriculture and, intended to be used to maintain and preserve natural and ecologically harmonious landscapes by deriving management methods suitable for landscape elements targeting the major landscape elements of the organic farming complex. To carry out, this study performed the experts survey which is composed of 13 major landscape elements, including rice paddies and fields, monoculture and diverse crops, dirt roads, windbreak trees, accent planting, dum-bung(small pond), natural small river, natural waterways, plastic film houses, one-storied houses, and pavilion. As a result, Farm land was formed in a square shape, concentrated in an independent space, planted companion plants around the crop, and covered with plants to manage the borders. As for the surrounding environment, it was analyzed that the aspart road system circulating through the village, the evergreen broad-leaved windbreak forest around the cultivated land, and the accent plant located at the entrance of the village were suitable. The hydrological environment consists of Round small pond made of stone in an open space, natural rivers around the village, and natural channels around the farmland, and The Major facilities are suitable for greenhouses that are shielded by plants in independent regions, and wooden duck houses located inside the cultivation area are suitable and The settlement facilities were analyzed to be suitable for single-story brick houses located in independent residential areas, pavilion located with greenery in the center of the village, and educational spaces shielded with wood from arable land. If supplementary evaluation criteria suitable for the management of organic farming landscape are additionally supplemented based on the results derived from this study, It is expected to enhance the landscape value of ecologically superior organic farming.

A Laboratory-Scale Study of the Applicability of a Halophilic Sediment Bioelectrochemical System for in situ Reclamation of Water and Sediment in Brackish Aquaculture Ponds: Establishment, Bacterial Community and Performance Evaluation

  • Pham, Hai The;Tran, Hien Thi;Vu, Linh Thuy;Dang, Hien The;Nguyen, Thuy Thu Thi;Dang, Thu Ha Thi;Nguyen, Mai Thanh Thi;Nguyen, Huy Quang;Kim, Byung Hong
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권7호
    • /
    • pp.1104-1116
    • /
    • 2019
  • In this study, we investigated the potential of using sediment bioelectrochemical systems (SBESs) for in situ treatment of the water and sediment in brackish aquaculture ponds polluted with uneaten feed. An SBES integrated into a laboratory-scale tank simulating a brackish aquaculture pond was established. This test tank and the control (not containing the SBES) were fed with shrimp feed in a scheme that mimics a situation where 50% of feed is uneaten. After the SBES was inoculated with microbial sources from actual shrimp pond sediments, electricity generation was well observed from the first experimental week, indicating successful enrichment of electrochemically active bacteria in the test tank sediment. The electricity generation became steady after 3 weeks of operation, with an average current density of $2.3mA/m^2$ anode surface and an average power density of $0.05mW/m^2$ anode surface. The SBES removed 20-30% more COD of the tank water, compared to the control. After 1 year, the SBES also reduced the amount of sediment in the tank by 40% and thus could remove approximately 40% more COD and approximately 52% more nitrogen from the sediment, compared to the control. Insignificant amounts of nitrite and nitrate were detected, suggesting complete removal of nitrogen by the system. PCR-DGGE-based analyses revealed the dominant presence of Methylophilus rhizosphaerae, Desulfatitalea tepidiphila and Thiothrix eikelboomii, which have not been found in bioelectrochemical systems before, in the bacterial community in the sediment of the SBES-containing tank. The results of this research demonstrate the potential application of SBESs in helping to reduce water pollution threats, fish and shrimp disease risks, and thus farmers' losses.