DOI QR코드

DOI QR Code

An Experimental Approach to Secure Freshwater Fish Shelter according to the Water Level Fluctuations in a Shallow Pond

얕은 연못에서 수위변동에 따른 담수 어류 피난처 확보를 위한 실험적 접근

  • Ahn, Chang Hyuk (Construction Environment Research Division, Korea Institute of Construction Technology) ;
  • Joo, Jin Chul (Construction Environment Research Division, Korea Institute of Construction Technology) ;
  • Lee, Saeromi (Construction Environment Research Division, Korea Institute of Construction Technology) ;
  • Oh, Ju Hyon (Construction Environment Research Division, Korea Institute of Construction Technology) ;
  • Ahn, Hosang (Construction Environment Research Division, Korea Institute of Construction Technology) ;
  • Song, Ho Myeon (Construction Environment Research Division, Korea Institute of Construction Technology)
  • 안창혁 (한국건설기술연구원 환경연구실) ;
  • 주진철 (한국건설기술연구원 환경연구실) ;
  • 이새로미 (한국건설기술연구원 환경연구실) ;
  • 오주현 (한국건설기술연구원 환경연구실) ;
  • 안호상 (한국건설기술연구원 환경연구실) ;
  • 송호면 (한국건설기술연구원 환경연구실)
  • Received : 2013.08.26
  • Accepted : 2013.09.25
  • Published : 2013.09.30

Abstract

Physical disturbance, which induces a lack of flow rate, frequently occurs in freshwater ecosystem. Due to this, it is required to provide a new fish shelter to resolve. We installed a pilot scale test-bed to scrutinize the relationship between water level and the influence of fish shelter. The proposed ADP (artificial deep pool) is a fish shelter which composed of concrete materials. From the monitoring results in test-bed, it was observed that the population of fish was the highest at the 0.5 m in depth from the water level of experimental pond. But it was more appropriate for shallow water level (<0.3 m) to conserve the total number of fish by increasing the number per unit area despite of lower inner temperature and DO than outer environment. Therefore, inner of ADP was more efficient lentic system for fish to live due to higher WCS, OS, SS, and TS. In addition, there was a relative abundance of WCS fish species such as Acheilognathus koreensis (A. koreensis), Carassius carassius (C. carassius). Considered these results, it is suggested that ADP is appropriate to use for fish shelter and habitat for the fishes in lentic ecosystem.

담수생태계에서 갈수기가 지속되면 다양한 물리적 장애가 발생한다. 이 시기는 어류의 생태 유지용수가 부족하여, 이동이 일어남에 따라 새로운 피난처 및 서식처가 요구된다. 이러한 문제를 해결하기 위해 본 연구에서는 실증규모의 실험시설을 구축하였으며, 수위변화와 어류 피난처의 관계를 분석하였다. ADP (artificial deep pool)는 본 연구에서 제안된 인공적인 깊은 웅덩이이다. 본 시설을 실증규모의 test-bed 실험구에 적용하여 모니터링 한 결과, 수위변화에 따른 어류 개체수는 실험연못의 수심 0.5 m에서 가장 높게 나타났다. 하지만 ADP에서는 낮은 외부 수위 조건(<0.3 m)에서 단위면적당 어류 개체수가 증가하였고, 실험구의 총 어류 군집을 보존하는데 기여하였다. 또한, ADP 내부의 수온과 DO는 외부보다 낮게 조성되었지만, 어류는 지속적으로 서식하였다. 이 결과와 관련하여, ADP 내부는 WCS, OS, SS, TS 등이 높은 효율적인 정수생태계임을 나타내었다. 더욱이, ADP 내부의 종풍부도는 Acheilognathus koreensis (A. koreensis), Carassius carassius (C. carassius)와 같은 WCS가 높은 비율로 측정되었다. 결국, 수위가 낮게 형성되는 동안 어류는 서식환경의 교란에 의해 수심이 깊은 곳으로 피난하였고, 본 연구 결과를 종합하여 볼 때, ADP는 정수생태계에 적합한 어류 피난 및 서식처로 활용이 가능함을 시사하였다.

Keywords

References

  1. Poff, N. L, "Why disturbances can be predictable: a perspective on the definition of disturbance in streams," J. N. Am. Benthol. Soc., 11, 86-92(1992). https://doi.org/10.2307/1467885
  2. Giller, P. S., "Floods and droughts: the effects of variations in water flow on streams and rivers. In: Disturbance and recovery of ecological systems," Royal Irish Academy, Dublin, Ireland, pp. 1-19(1996).
  3. Fisher S. G., Gray, L. J., Grimm, N. B. and Busch, D. E., "The temporal succession in a desert stream following flooding," Ecol. Monog., 52, 93-110(1982). https://doi.org/10.2307/2937346
  4. Poff, N. L. and Allan, J. D. "Functional organization of stream fish assemblages in relation to hydrological variability," Ecology, 76, 606-627(1995). https://doi.org/10.2307/1941217
  5. Magoulick, D. D., "Spatial and temporal variation in fish assemblages of drying stream pools: the role of abiotic and biotic factors," Aquat. Ecol., 34, 29-41(2000). https://doi.org/10.1023/A:1009914619061
  6. Daniel, D., Magoulick, D. and Robert, M. K., "The role of refugia for fishes during drought: a review and synthesis," Freshw. Biology., 48, 1186-1198(2003). https://doi.org/10.1046/j.1365-2427.2003.01089.x
  7. Schlosser, I. J. and Angermeier, P. L., "Spatial variation in demographic processes of lotic fishes: conceptual models, empirical evidence, and implications for conservation," Am. Fisheries Soc. Symposium, 17, 392-401(1995).
  8. Ministry of Environment of Republic of Korea, "Guidelines for river restoration," Ministry of Environment of Republic of Korea, pp. 1-21, (2002).
  9. Korea Water Resources Corporation, "Water Science," Korea Water Resources Corporation, pp. 1-55(1991).
  10. Regier, H. A. and Meisner, J. D. "Anticipated effects of climate change on freshwater fishes and their habitat," Fisheries, 15(6), 10-15(1990). https://doi.org/10.1577/1548-8446(1990)015<0010:AEOCCO>2.0.CO;2
  11. Scott, D. B., Tracy, D. H., Sean, T. L. and Walter, G. D., "The influence of changing water levels and temperatures on the food habits of walleye in lake Oahe, South Dakota," J. Freshw. Ecol., 10(1), 179-189(1995).
  12. Mohseni, O., Stefan, H. G. and Eaton, J. G., "Global warming and potential changes in fish habitat in U.S. streams," Climate Change, 59(3), 389-409(2003). https://doi.org/10.1023/A:1024847723344
  13. Donaldson, M. R., Cooke, S. J., Patterson, D. A. and Macdonald, J. S., "Cold shock and fish," J. Fish Biol., 73, 1491-1530(2008). https://doi.org/10.1111/j.1095-8649.2008.02061.x
  14. Alexander, N., Graham, D. Raby, C. T. and Hasler, M. K. Taylor, S. J. C., "Fish stranding in freshwater systems: Sources, consequences, and mitigation," J. Environ. Manage., 103, 133-141(2012). https://doi.org/10.1016/j.jenvman.2012.03.007
  15. Townsend, C. R., "The patch dynamics concept of stream community ecology," J. N. Am. Benthol. Soc., 8, 36-40(1989). https://doi.org/10.2307/1467400
  16. Arrington, D. A., Winemiller, K. O. and Layman, C. A., "Community assembly at the patch scale in a species-rich tropical river," Oecologia., 144, 157-67(2005). https://doi.org/10.1007/s00442-005-0014-7
  17. Kim, J. O., Shin, H. S., Yoo, J. H., Lee, S. H., Jang, K. S. and Kim, B. C., "Functional evaluation of small-scale pond at paddy field as a shelter for mudfish during midsummer drainage period," Kor. J. Environ. Agric., 30(1), 37-42(2011). https://doi.org/10.5338/KJEA.2011.30.1.37
  18. Cowardin, L. M., Carter, V. and LaRoe, E. T., "Classification of wetlands and deepwater habitats of the united states," U.S. Department of the Interior Fish and Wildlife Service, Office of Biological Services(1979).
  19. Kusuda, S. and Noboru, K., "Upstream-migrating loach in the fishway for a rice paddy," Fish Water, 45, 19-22(2009).
  20. Harding, J. S., Norton, D. A. and McIntosh, A. R., "Persistence of a significant population of rare Canterbury mudfish (Neochanna burrowsius) in a hydrologically isolated catchment," New Zeal. J. Mar. Fresh., 41, 309-316(2007). https://doi.org/10.1080/00288330709509918
  21. OhioEPA. Methods for assessing habitat in flowing waters: using the qualitative habitat evaluation index (QHEI)(2006).
  22. An, K-G., Lee, J. Y., Bae, D. Y., Kim, J. H., Hwang, S. J., Kwon, D. H., Lee, J. G. and Kim, C. S., "Ecological Assessments of Aquatic Environment using Multi-metric Model in Major Nationwide Stream Watersheds," Kor. Soc. Water Qual., 22(5), 796-804(2006).
  23. Gabelhouse, J. D. W., "Alength-categorization system to assess fish stocks," N. Am. J. Fish. Manage., 4, 273-285(1984). https://doi.org/10.1577/1548-8659(1984)4<273:ALSTAF>2.0.CO;2
  24. John, W. H., "Comparison between a fine mesh trap net and five other fishing gears for sampling shallow-lake fish communities in New Zealand (Note)," New Zealand J. Mar. Freshwater Res., 23, 321-324(1989). https://doi.org/10.1080/00288330.1989.9516368
  25. Kevin, L. P., Gene, R. W. and Daryl, L. B., "Maximum size of fish caught with standard gears and recreational angling," Fisheries Res., 76, 117-122(2005). https://doi.org/10.1016/j.fishres.2005.05.013
  26. Korea Water Resources Corporation, "Development and application of determine for instream flow," Kor. Water Res. Corp., (1995).
  27. Kramer, D. L. "Dissolved oxygen and fish behavior," Environ. Biol. Fishes., 18(2), 81-92(1987). https://doi.org/10.1007/BF00002597
  28. Karr, J. R., "Assessment of biotic integrity using fish communities," Fishieries, 6, 21-27(1981). https://doi.org/10.1577/1548-8446(1981)006<0021:AOBIUF>2.0.CO;2
  29. An, K.-G., Park, S. S. and Shin, Y. Y., "An evaluation of a river health using the index of biological integrity along with relations to chemical and habitat conditions," Environ. Int., 28(5), 411-420(2002). https://doi.org/10.1016/S0160-4120(02)00066-1
  30. An, K.-G., Jung, S. H. and Choi, S. S., "An evaluation on health conditions of Pyong-chang River using the index of biological integrity (IBI) and qualitative habitat evaluation index (QHEI)," Kor. J. Limnol., 34(3), 153-165(2001).
  31. U. S. EPA. "Fish field and laboratory methods for evaluating the bilogical integrity of surface waters," EPA600-R-92-111 (1993).
  32. Seo, J. W., "Fish fauna and ecological characteristics of dark chub (Zacco temminckii) population in the mid-upper region of Gam Stream," Kor. J. Limnol., 38(2), 196-206(2005).
  33. Kim, C. H., Lee, W. O., Lee, J. H. and Baek, J. M., "Reproduction study of Korean endemic species Acheilognathus koreensis," Kor. J. Ichthyol., 23(2) 150-157(2011).
  34. Kim, H. S. and Kim, I. S., "Population ecology of deep body bitterling, Acheilognathus macropterus (Pisces: Cyprinidae) in the Bulgapcheon Stream," Kor. J. Ichthyol., 24(1), 27-34 (2012).
  35. Chun, S. L., "About the distribution of Zacco temminckii and Moroco oxycephalus in Jiri mountain stream," Kor. J. Limnol., 22(2) 150(1986).
  36. Liu, C. W., Lin, K. H. and Kuo, Y.N., "Appication of factor analysis in the assessment of groundwater quality in a blackpoot disease area in Taiwan," Sci. Tot. Environ., 313, 77-89(2003). https://doi.org/10.1016/S0048-9697(02)00683-6
  37. Kim, J. D., Yang, H., Cho, Y. C., Kim, Y. C. and Cho, M. Y., "Monitoring of pathogens and characteristics of fish community in the Taewha River," Kor. J. Environ. Biol., 28(3), 143-149(2010).
  38. Layman, C. A., Montana, C. G. and Allgeier, J. E., "Linking fish colonization rates and water level change in littoral habitats of a Venezuelan floodplain river," Aquat. Ecol., 44, 269-273(2010). https://doi.org/10.1007/s10452-009-9256-5
  39. Resh, V. H., Brown, A. V., Covich, A. P., Gurtz, M. E., LiH, W., Minshall, G. W., Reice, S. R., Sheldon, A. L., Wallace, J. B. and Wissmar, R. "The role of disturbance in stream ecology," J. N. Am. Benthol. Soc., 7, 433-455(1988). https://doi.org/10.2307/1467300
  40. Lake, P. S. "Ecological effects of perturbation by drought in flowing waters," Freshwater Biol., 48, 1161-1172(2003). https://doi.org/10.1046/j.1365-2427.2003.01086.x
  41. Andrew, J. H. D. and Daved, J. K., "Fish community responses to drying disturbances in an intermittent stream: a landscape perspective," Freshwater Biol., 52, 1719-1733(2007). https://doi.org/10.1111/j.1365-2427.2007.01800.x

Cited by

  1. A Study on Development of Freshwater Fish Shelter and Evaluation of Water Quality for the Reduction of Thermal Stress in Shallow Pond vol.36, pp.12, 2014, https://doi.org/10.4491/KSEE.2014.36.12.828