• Title/Summary/Keyword: Pond Restoration

Search Result 86, Processing Time 0.027 seconds

A Study on the Development of Design Model of Ecological Park as Stormwater Storage Facilities (저류지 생태공원 설계모형 개발에 관한 연구)

  • Byeon, Wooil
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.3
    • /
    • pp.1-16
    • /
    • 2006
  • The purpose of this study is to develop design model of ecological park as stormwater storage facilities. The results are as follows : First, the design model of ecological park as stormwater storage facilities consider ecological and landscape characteristics such as high efficiency of land use, function as disaster prevention, ecological water purification, formation of habitat for flora and fauna. Second, this study demonstrates two types of plane structure and eight types of designed section. They can be combined and designed depending on conditions of each site. The facilities of stormwater storage conduct disaster prevention system and ecological park. Retention pond in stormwater storage facilities for ecological park also should be made for ecological restoration in the site. Third, the ecological park provide the basis for ecological network from in-site to out-site. Therefore its conservation and restoration plan consider the ecosystems of the site. Fourth, the most important factor for maintenance and management for retention pond is keeping water quality. Sustainable Structured wetland Biotop system is suggested for ecological water purification system in the retention pond which is one of the constructed wetland system using multi-celled aquatic plant and pond. This system can also provide habitat for animals and plants, water friendly park for men, and beautiful landscape.

A Study on the Improvement Plan for a Habitat of 'Gold-spotted Pond Frog (Pelophylax chosenicus)' in Danger of Regional Extinction in the Urban Area - Case on the Abandoned Railroad Site on Su-in Line - (지역적 절멸 위험에 처한 도심 속 금개구리의 서식처 개선방안 연구 - 수인선 폐철도변을 사례로 -)

  • Yang, Deok-Suk;Koo, Bon Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.2
    • /
    • pp.95-107
    • /
    • 2016
  • The gold-spotted pond frog(Pelophylax chosenicus) classified as an Anura in Amphibia is sharply decreasing due to various changes of habitats environment, and designated as IUCN Red List Threatened species(VU; Vulnerable) internationally and domestic endangered species Class-II; therefore, it's in urgent need of the research on habitats restoration of the gold-spotted pond frog in order to prevent its extinction. This study was carried out to verify the effect after restoration by introducing the inhabitation elements deducted by the literature research and a field survey on the habitats for the gold-spotted pond frog in danger of regional extinction in the urban area of Ansan city, Gyeonggi-do, Korea. Accordingly, the capacity for bio-species was increased by expanding the area of habitats into $11,845m^2$, and securing the place for hibernation and corridors and discharge within the habitats, etc. As a result of the monitoring the number of individuals increased by 9.5 times as the reproductive success rate of the gold-spotted pond frog got higher, and by virtue of improvement in the habitats, biodiversity increased to 183 species(4 species of amphibians and reptiles, 4 species of mammals, 17 species of birds, 53 species of insects(terrestrial/Benthic), 4 species of fish, and 102 species of plants). It might be possible to verify the restoration effect of the habitats through continuous monitoring, and suggest the restoration model on the habitats for continuously survivable the gold-spotted pond frog in the urban area by deducting the matters to be improved.

A Case Study on Development of Stormwater Retention and Infiltration Pond System (우수저류 및 침투연못 시스템개발 사례연구 - 우수 저류 및 침투 효과를 중심으로 -)

  • Lee, Jae Chul;Yoon, Yeo Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.4
    • /
    • pp.52-61
    • /
    • 2003
  • This study was carried out to analyze the effects of stormwater retention and infiltration pond on reduction of flood peak and volume in a experimentally developed ecological pond. The experimental site has 542$m^2$ watershed area, 1,310mm yearly-averaged rainfall. And the area of the retention pond is 60$m^2$, the maximum water depth is 0.5m, the maximum and average storage is 15$m^3$and 9.3$m^3$d. And the area of infiltration pond is 58$m^2$, and the water depth varies 0.2m~0.5m. The monitoring system consists of one rainfall gage, one Parshall flume and acoustic water level gage, two rectangular weirs and acoustic water level gage for discharge gaging, and one data recording unit. Data from ten storm events in total, three storm events in year 2000 and seven storm events in year 2001, were collected. From the data the evaporation rate was achieved with the water balance equation, and the result shows 5.0mm/day in average. The result from the analysis of the effects on reduction of flood peak and volume, is that 14% reduction of flood volume and 15% reduction of flood peak in retention pond and 49% reduction of flood volume in infiltration pond.

The Abuse and Invention of Tradition from Maintenance Process of Historic Site No.135 Buyeo Gungnamji Pond (사적 제135호 부여 궁남지의 정비과정으로 살펴본 전통의 남용과 발명)

  • Jung, Woo-Jin
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.35 no.2
    • /
    • pp.26-44
    • /
    • 2017
  • Regarded as Korea's traditional pond, Gungnamj Pond was surmised to be "Gungnamji" due to its geological positioning in the south of Hwajisan (花枝山) and relics of the Gwanbuk-ri (官北里) suspected of being components to the historical records of Muwang (武王)'s pond of The Chronicles of the Three States [三國史記] and Sabi Palace, respectively, yet was subjected to a restoration following a designation to national historic site. This study is focused on the distortion of authenticity identified in the course of the "Gungnamji Pond" restoration and the invention of tradition, whose summarized conclusions are as follows. 1. Once called Maraebangjuk (마래방죽), or Macheonji (馬川池) Pond, Gungnamji Pond was existent in the form of a low-level swamp of vast area encompassing 30,000 pyeong during the Japanese colonial period. Hong, Sa-jun, who played a leading role in the restoration of "Gungnamji Pond," said that even during the 1940s, the remains of the island and stone facilities suspected of being the relics of Gungnamji Pond of the Baekje period were found, and that the traces of forming a royal palace and garden were discovered on top of them. Hong, Sa-jun also expressed an opinion of establishing a parallel between "Gungnamji Pond" and "Maraebangjuk" in connection with a 'tale of Seodong [薯童說話]' in the aftermath of the detached palace of Hwajisan, which ultimately operated as a theoretical ground for the restoration of Gungnamj Pond. Assessing through Hong, Sa-jun's sketch, the form and scale of Maraebangjuk were visible, of which the form was in close proximity to that photographed during the Japanese colonial period. 2. The minimized restoration of Gungnamji Pond faced deterrence for the land redevelopment project implemented in the 1960s, and the remainder of the land size is an attestment. The fundamental problem manifest in the restoration of Gungnamji Pond numerously attempted from 1964 through 1967 was the failure of basing the restorative work in the archaeological facts yet in the perspective of the latest generations, ultimately yielding a replication of Hyangwonji Pond of Gyeongbok Palace. More specifically, the methodologies employed in setting an island and a pavilion within a pond, or bridging an island with a land evidenced as to how Gungnamji Pond was modeled after Hyangwonji Pond of Gyeongbok Palace. Furthermore, Chihyanggyo (醉香橋) Bridge referenced in the designing of the bridge was hardly conceived as a form indigenous to the Joseon Dynasty, whose motivation and idea of the misguided restoration design at the time all the more devaluated Gungnamji Pond. Such an utterly pure replication of the design widely known as an ingredient for the traditional landscape was purposive towards the aesthetic symbolism and preference retained by Gyeongbok Palace, which was intended to entitle Gungnamji Pond to a physical status of the value in par with that of Gyeongbok Palace. 3. For its detachment to the authenticity as a historical site since its origin, Gungnamji Pond represented distortions of the landscape beauty and tradition even through the restorative process. The restorative process for such a historical monument, devoid of constructive use and certain of distortion, maintains extreme intimacy with the nationalistic cultural policy promoted by the Park, Jeong-hee regime through the 1960s and 1970s. In the context of the "manipulated discussions of tradition," the Park's cultural policy transformed the citizens' recollection into an idealized form of the past, further magnifying it at best. Consequently, many of the historical sites emerged as fancy and grand as they possibly could beyond their status quo across the nation, and "Gungnamji Pond" was a victim to this monopolistic government-led cultural policy incrementally sweeping away with new buildings and structures instituted regardless of their original space, and hence, their value.

Analysis of Ecological Variation after Creation of the Eco-pond (생태연못 조성공법 적용후의 자연생태 변화분석)

  • Lee, Eun Yeob;Moon, Seok Ki
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.1
    • /
    • pp.1-15
    • /
    • 2001
  • The purpose of this study is to evaluate the creation techniques of eco-pond, one of biotopes to promote biodiversity in urban residence area. Investigation were classified out plant, mammals, amphibia, reptiles, birds, fishes and insects. The results were summarized as follows: Around the eco-pond shows simple vegetation structurs, consisted of Pinus densoflora S et Z. and Robinia pseudoacacia under competition. In case of shrub, consisted of 4 species but plant growing appearence diversely by seasons. The evaluation of vegetation of eco-pond, there are found 4 species of aquatic plants. Inside the revetment of pond, Echinochloa crus-galli, Persicaria hydropiper, Digiaria sanguinalis, Cyperus microiria and Bidens frondosa L. are mainly distributed. Near the revetment, Trifolium repens L. and Digiaria sanguinalis are prevailed. And in its background, Erigeron canadensis, Erigeron annuus and vines are begins to make their appearances. When evaluation animals in eco-pond and contrast plot, it show simple species and numbers of mammals. It seemed to be resulted from its isolation and outside intervention by users In eco-pond, Pica pica and Streptopelia orientalis are mainly found and in contrast plot of Columba livia, which are so strong adaptation to city life environment. In case of amphibia and reptiles, none is observed in contrast plot, but in ecological pond, Rana nigromaculata and Hyla japonica are constantly observed. In case of insects, more species are found in eco-pond than contrast plot. And in eco-pond, more dragonflies are visibly increased one year after its construction. In floral zone inside of pond revetment, grasshopper and Locusta migratoria are frequently observed. In case of butterflies, they are mainly found in log fence and willow(salix) around eco-pond. In case of fishes inside of eco-pond, the species and its density are remarkable increased one year after the construction. With above evaluation results, we have identify the increase effect of biodiversity after construction of the eco-pond.

  • PDF

Treatment Efficiency of a Pond-Wetland System for the Water Quality Conservation of Estuarine Lake (담수호 수자원보전을 위한 수질정화 연못-습지 시스템의 초기처리수준)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.4
    • /
    • pp.64-71
    • /
    • 2001
  • Treatment efficiency was examined of a pond-wetland system constructed for water quality conservation of Koheung Estuarine Lake over one year after its establishment in July 2000. The system is composed of primary and secondary ponds in series and six wetland cells in parallel. Cattails (Typha angustiflora) were planted in three wetland cells and common reeds (Phragmites australis) in three other cells. Water pumped from Sinyang Stream flowing into the Lake was funneled into primary pond whose effluent was discharged into secondary pond by gravity flow. Effluent from secondary pond was distributed into each wetland cell. SS, $BOD_5$, T-N, and T-P concentrations in influent to primary pond, and effluent from primary pond, secondary pond, and three wetland cells planted with cattails were analyzed for about one year from August 2000 to August 2001. The removal rates at primary pond for SS, $BOD_5$, T-N and T-P were 29%, 30%, 15%, and 36%, respectively. The abatement rates at secondary pond for SS, $BOD_5$, T-N and T-P were 38%, 40%, 30%, and 47%, respectively. The reduction rates measured at three cattail-planted wetland cells for SS, $BOD_5$, T-N and T-P were 54%, 57%, 60%, and 68%, respectively. Considering early stage of the pond-wetland system and inclusion of winter during the research period, its treatment efficiency was rather good. Cattails had not yet grown to dense stands due to initial establishment period, which resulted in slightly lower treatment efficiencies of wetland cells for these pollutants, compared with those of ponds.

  • PDF

Construction of the Ecological Pond & Wet Biotop Using Rainwater (빗물을 이용한 소규모 생태연못 및 습지 모형 개발)

  • Lee, Eun Heui
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.2
    • /
    • pp.92-100
    • /
    • 2001
  • The purpose of this study is to develop a method to spread out the ecological ponds in urban areas more effectively. It is urgent to supply the ecological ponds in more broad scope to ensure the water space in urban areas which has been dried out. It is necessary to formulate a plan for improving the amenity in the cities through creation a biotop in swampy land by building rainfall ponds. Thus, a model of the ecological pond in this study has been developed by reviewing the related researches which provide the theoretical basis and by considering the characteristics of nature for a naturally approached pond. This study has produced a ecological pond model in order to introduce and spread out damp biotop. Ecological aspects have been mainly considered in designing and building the pond model. This model consists of areas for emerged plants and bog plants and has its advantage in providing animals and insects with habitats and shelters. In addition, the model includes areas for emerged plants, which are very effective in purification of the rainfall from the rooftop. After the construction of the pond, the plants were planted according to the plan, and the infiltration trench was installed beside the pond to drain out the overflow of the pond. The result of this research has shown the possibility of supplying the ecological pond in small parks and in schools of the city in an easy way. Through the application of this pond system, the water cycle and the ecosystem in urban areas will be improved.

  • PDF

Treatment Level and Reactions of a Treatment Pond System Purifying Sinyang Stream Water (신양천 하천수정화 연못시스템의 처리수준 및 연못반응)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.6
    • /
    • pp.1-12
    • /
    • 2005
  • Treatment level and pond reactions of a pond system were examined from May to October 2002. The system was constructed in July 2000 for purifying water of Sinyang stream that flows into Koheung Estuarine Lake located in the southern part of the Korean Peninsula. The system was composed of a primary and a secondary pond in series and established on the rice field near the lake. Water pumped from the stream was funneled into the primary pond, whose effluent was discharged into the secondary pond by gravity flow. Effluent from the secondary pond was funneled into wetlands. About 130 $m^3$/day of water was pumped into the primary pond and detention time of the primary and secondary pond was about 2 days. DO from the surface to the 1.0 m depth of the primary and secondary pond was in the rage of 5.2 to 11.0 mg/L and 4.3 to 0.7 mg/L, respectively. DO at the bottom layer of the primary pond was 0 mg/L and that of the secondary pond ranged 3.0~4.7 mg/L. The primary pond functioned as a facultative pond and the secondary as an aerobic one. The temperature difference between the surface and bottom layers of the ponds in August was about $2.5^{\circ}C$ and that in May and October was about $1.0^{\circ}C$. Thermocline was observed in the primary pond during the high ambient temperature of August. The sludge depth of the primary pond in May, August, and October was 2.4, 1.9, and 2.2 cm, respectively. That of the secondary pond was 1.2, 1.0, and 1.1 cm, respectively. SS, $BOD_5$, T-N, and T-P concentrations in influent averaged 16.64, 6.71, 6.21, and 0.23 mg/L and those in effluent from the primary pond averaged 11.48, 4.97, 4.81, and 0.17 mg/L, respectively. The removal rates of the primary pond for SS, $BOD_5$, T-N and T-P were 31%, 26%, 22%, and 24%, respectively. Average concentrations of SS, $BOD_5$, T-N, and T-P in effluent from the secondary pond were 9.81, 4.07, 4.03, and 0.14 mg/L, respectively and the abatement rates of the secondary pond for SS, $BOD_5$, T-N and T-P were 20%, 12%, 13%, and 15%, respectively. SS, $BOD_5$, T-N and T-P concentrations in effluent from the primary pond were significantly low(p=0.001) when compared with those from the secondary one.

Water Purification and Ecological Restoration Effects of Sustainable Structured Wetland Biotop (SSB) System Established in the Habitat of the Endangered Species -Exemplified by An-teo Reservior Ecological Park in the Habitat of the Gold-spotted Pond Frog - (멸종위기종 서식처에 조성된 생태적 수질정화 비오톱 시스템의 수질정화 및 생태복원 효과 - 금개구리 서식처인 안터 저수지 생태공원 사례를 중심으로 -)

  • Byeon, Chan-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.6
    • /
    • pp.145-159
    • /
    • 2010
  • A Sustainable Structured wetland Biotop (SSB) system was planned, designed, and finally constructed, and maintained in the An-teo Reservoir ecological park, which is the habitat of the endangered Gold-spotted Pond Frog. The system purifies polluted water of An-teo Reservoir which flows from up to bottom within the system. Water was sampled once a month at the inlet and at the outlet from December, 2009 to August, 2010. BOD5, SS, T-N and T-P were analyzed. Average influent and effluent BOD5 concentration was 2.9 and 1.0 mg/L, respectively, and BOD5 removal was 67%. SS concentration of influent and effluent averaged 18.1 mg/L and 2.5 mg/L, respectively, and SS abatement amounted to 86%. Average influent and effluent T-N concentration was 0.426 mg/L and 0.147 mg/L, respectively, and T-N retention was 66%. T-P concentration of influent and effluent averaged 0.071 mg/L and 0.022 mg/L, respectively, and T-P removal amounted to 68%. Plant and frog species of the system were monitored during the period. Amphibia and reptiles provided 7 species and 4 families including the Endangered Gold-Spotted Pond Frog (Rana chosenica ) which also lives in the system. Twenty-six plant species were naturally introduced into the system, however, they didn't make up a significant portion of the plant populations compared with the planted species. The endangered plants, Bladderwort (Utricularia vulgaris var. japonica ) and Euryale ferox were observed in An-teo Reservoir as well as in the system.

A Study on the Change of Pond in the Jongmyo Shrine (종묘 지당(池塘)의 변천(變遷)에 관한 연구)

  • Oh, Jun-young;Kim, Young-mo
    • Korean Journal of Heritage: History & Science
    • /
    • v.49 no.4
    • /
    • pp.64-79
    • /
    • 2016
  • The purpose of the present study is to clarify the process of change to the pond at the Jongmyo Shrine(宗廟), from the Joseon Dynasty period to the modern and contemporary era. The consequent research results can be summarized as follows. The first record of the Jongmyo pond is confirmed in the "Annals of King Sejong(世宗實錄)". The pond, which was being constructed at the time, refers to the current upper pond(上池). A pair of islets(雙島) were constructed during the Sukjong(肅宗) period, with several trees planted on the middle islet(中池). The middle pond is thick with lotuses. In particular, the middle island on the middle pond subsequently changed into a single island(單島), which is likely to be related to the pond expansion during the reign of Youngjo(英祖). When the lower pond(下池), involving dualistic arrangement, was constructed in the modern and contemporary era, the pond of the Jongmyo Shrine underwent a drastic transformation phase. The lower pond was constructed before 1947 at the latest, and when the right side of the lower pond was filled in the mid 1980s, the dualistically arranged lower pond became a unified type of lower pond. On the other hand, the bank protections of the upper and middle ponds were constructed with earth, but was subsequently modified into its current form using stone.