• Title/Summary/Keyword: Polyurethanes

Search Result 151, Processing Time 0.022 seconds

Synthesis and Physical Properties of Liquid-Crystalline Polyurethanes (液晶性 Polyurethane의 合成과 物性에 關한 硏究)

  • Lee, Jong Back;Song, Jin Cherl;Choi, Dae Woong
    • Textile Coloration and Finishing
    • /
    • v.8 no.1
    • /
    • pp.56-63
    • /
    • 1996
  • A number of thermotropic liquid crystalline polyurethanes with mesogenic unit were synthesized by polyaddition of a para-type diisocyanate such as 1, 4-phenylene diisocyanate(1,4-PDI) with 4, 4'-bis($\omega$-hydorxyalkoxy) biphenyls($BP{m}$) in DMF. The thermal and liquid crystab line properties were examined by differential scanning calorimetry(DSC), polarized optical microscopy, and wide-angle X-ray scattering(WAXS). Intrinsic viscosities of the polymers exbibited two endothermic peaks correspondinding to phase transitions of melting and isotropization. For example, polyurethane(1,4-PDI/($BP{11}$) ) was found to display a liquid crystalline phase between 177 to 205$^{\circ}C$. In order to know how the hydrogen bonding interaction affects the formation of mesophases in polyurethane 1, 4-PDI/($BP{8}$) / thermal processing FT-IR measurements were carried out. It was found that the stretches regarded as shift to higher frequency region with increasing temperature which showed grdually their liquid crystalline phase

  • PDF

Preparation of Insulin-Immobilized Polyurethane Films and Their Interaction with Fibroblasts (인슐린을 고정화한 폴리우레탄 막의 제조 및 섬유아세포와의 상호작용)

  • 맹만;김우식;이동호;박이순;강인규
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.538-544
    • /
    • 2004
  • Polyurethanes containing L-lysine segments in the main chain (PULL) were synthesized from 4,4'-diphenymethyl diisocynate, poly(tetramethylene glycol), and z-lysine oligomer as a chain extender. Insulin-immobilized polyurethanes (PULL-In) were prepared by a coupling reaction of PULL surface amino groups with insulins. The amount of immobilized insulin was about 0.30 nmol/$\textrm{cm}^2$, as determined by Bradford method. The interactions of NIH/3T3 fibroblasts with surface-modified PULLs were investigated using $^3$H-thymidine incoporation and optical microscopy. The cell growth rate on PULL-In film was higher than those on other substrates. The cell proliferation by the immobilized insulin was almost same as that by the free one.

Synthesis and Characterization of waterborne polyurethane based on castor oil (Castor Oil 기반의 수분산 폴리우레탄의 합성 및 특성)

  • Bae, Ji-Hong;Kim, Eunyoung;Kang, Kyung Seok;Park, Duck-Jei
    • Journal of Adhesion and Interface
    • /
    • v.18 no.4
    • /
    • pp.179-182
    • /
    • 2017
  • Waterborne polyurethanes(WPU) based on castor oil were successfully prepared using polycaprolactone diol(PCL), castor oil(CO) and 4,4'-methylene dicyclohexyl diisocyanate($H_{12}MDI$) as soft segment part, dimethylolbutanoic acid (DMBA) as emulsifier, and trimethylamine(TEA) as neutralizer based on different molecular weight of prepolymer. The various properties such as mechanical strength and surface reforming were evaluated using UTM, contact angle, FE-SEM based on the different molecular weight of polyol. Waterborne polyurethanes based on castor oil could be considered as a promising candidate to be applied the various adhesion fields.

Preparation and Properties of Waterborne Polyurethanes Based on Ttiblock Glycol $(CL)_{4.5}$-PTMG-$(CL)_{4.5}$ for Water Vapor Permeable Coatings: Effect of Soft Segment Content

  • Kwak, Yong-Sil;Kim, Han-Do
    • Fibers and Polymers
    • /
    • v.3 no.4
    • /
    • pp.153-158
    • /
    • 2002
  • A series of waterborne polyurethanes (WBPU) were prepared from 4,4-dicyclohexylmethane diisocyanate ($H_{12}$MDI),2,2-bis(hydroxylmethyl) propionic acid (DMPA), othylenediarnine (EDA), triethylamine (TEA), and triblock glycol [TBG, ($\varepsilon$-caprolactone)$_{4.5}$-poly(tetramethylene ether) glycol (MW= 2000)-($\varepsilon$-caprolactone)$_{4.5}$: $(CL)_{4.5}$-PTMG-$(CL)_{4.5}$, MW=3000] as a soft segment. Two melting peaks of TBG at about 14$^{\circ}C$ and 38$^{\circ}C$ were observed indicating the presence of two different crystalline domains composed of CL and PTMG dominant component. The effect of soft segment content (60-75 wt%) on the colloidal properties of dispersion, and thermal and mechanical properties of WBPU films, the water vapor permeability (WVP) and water resistance (WR) of WBPU-coated Nylon fabrics, and the adhesive strength of WBPU- coated layer and Nylon fabrics was investigated. As soft segment contents increased, the water vapor permeability of WBPU- coated Nylon fabrics increased from 3615 to 4502 g/$m^2$day, however, the water resistances decreased from 1300 to 500 mm$H_2$O.O.

Pot Life Assessment and Mechanical Property of Fast Curing Polyurethane Developed with Eco-friendly Pre-polymer

  • Joseph, Jessy;Moon, Junho;Kong, Tae Woong;Kim, Dong Ho;Oh, Jeong Seok
    • Elastomers and Composites
    • /
    • v.55 no.1
    • /
    • pp.13-19
    • /
    • 2020
  • 4,4'-Methylenebis(2-chlorobenzenamine) (MOCA)-free fast curing polyurethanes were prepared. In this study, the processibility of a fast curing polyurethane system was characterized by assessing the pot life. The obtained pot life of the polyurethane was 6-8 s, indicating that this prepolymer-curative system is appropriate for ribbon flow casting. The influence of the NCO index on the viscosity and mechanical properties was evaluated. The viscosity, tensile strength, tear strength, and hardness of the as-prepared polyurethanes showed an increasing trend, with an increase in the NCO index, whereas the elongation at break increased initially and then decreased with an increase in the NCO index. The gel fraction and crosslink density showed a direct correlation with the NCO index, which substantiated the improved mechanical properties at the higher NCO index. The coefficients of friction and abrasion deteriorated with an increase in the NCO index.

A Comparison of the Dielectric Behavior of Aromatic and Aliphatic Polyurethanes in Relation to Transitional Phenomena

  • Kim, Chy Hyung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.211-216
    • /
    • 2017
  • The dielectric properties of two polyurethanes (PUs) with different hard segments, i.e., aromatic methylene di-p-phenyl diisocyanate (MDI) and aliphatic hexamethylene diisocyanate (HDI), were investigated in the temperature range of -100 to $100^{\circ}C$ and in the frequency range of 1 Hz to 3 kHz. The ${\alpha}$-relaxations induced by the glass transition of the equivalent soft segments in the two PUs occurred at relaxation times of ${\tau}=3.46{\times}10^{-3}s$ for MDI-PU and ${\tau}=3.39{\times}10^{-2}s$ for HDI-PU at $-20^{\circ}C$, in accord with the temperature-frequency superposition principle, resulting in similar shifting factors. However, different I-relaxations were observed for the two PUs. The I-relaxation of MDI-PU occurred due to the mobility of the chain extenders near $80^{\circ}C$ with a slower shifting rate than the ${\alpha}$-relaxation. On the other hand, I-relaxation arising from both the extender and the unconstrained hard segments of HDI-PU occurred at $70{\sim}100^{\circ}C$, indicating complicated dielectric behavior due to partial interaction with the ${\alpha}$-relaxation at high frequencies. Thus, the I-relaxation of HDI-PU did not follow the superposition principle. The dielectric behaviors of the PUs were mainly influenced by their phase transitions, which were affected by the structure and components of the materials.

Diisocyanate Exposure Assessment for Polyurethane Foam Manufacturing Workers (우레탄 폼 제조방식에 따른 작업자의 디이소시아네이트 노출수준 평가)

  • Jeong, Jee Yeon;Park, Sung Wook;Lee, Jee Eun;Lee, Gwang Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.3
    • /
    • pp.209-216
    • /
    • 2012
  • Objectives: Polyurethanes are usually formed by the reactions of liquid diisocyanate components with liquid polyol resin components. Although polyurethanes have advantageous properties, such as their versatility, the manufacturing process generates diisocyanates, which can cause asthma and respiratory irritation in exposed workers. This study compared the differences in diisocyante concentrations between two different (molded foam and slabstock foam) polyurethane foam manufacturing methods. Materials and Methods: Active samples and direct reading samples of diisocyanates (MDI, TDI) were collected in five polyurethane foam manufacturing companies. Results: Workers' exposure concentrations of diisocyanate (GM: 4.078 ppb, range: 1.190~23.770 ppb) in a slabstock foam manufacturing company were much higher than those (GM: 0.011 ppb, range: 0.001~0.055 ppb) in molded foam manufacturing companies. The results of the direct reading samples of diisocyanate indicated that the rapid reaction zone of the slabstock foam processes emitted large amounts of diisocyanates. Conclusions: The exposure levels of diisocyanates for all molded foam workers were much lower than the occupational exposure standard (5 ppb); however, exposure levels for many slabstock foam workers exceeded the standard.

Synthesis and Properties of Bio-Thermoplastic Polyurethanes with Different Isocyanate Contents

  • Li, Xiang Xu;Sohn, Mi Hyun;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.225-231
    • /
    • 2019
  • Bio-based polyester polyol was synthesized via esterification between azelaic acid and isosorbide. After esterification, bio-based polyurethanes were synthesized using polyester polyol, 1,3-propanediol as the chain extender, and 4,4'-diphenylmethane diisocyanate, in mixing ratios of 1:1:1.5, 1:1:1.8, 1:1:2, and 1:1:2.3. The bio TPU (Thermoplastic Polyurethane) samples were characterized by using FT-IR (Fourier Transform Infrared Spectroscopy), TGA (Thermal Gravimetric Analysis), DSC (Differential Scanning Calorimetry), and GPC (Gel Permeation Chromatography). The mechanical properties (tensile stress and hardness) were obtained by using UTM, a Shore A tester, and a Taber abrasion tester. The viscoelastic properties were tested by an Rubber Processing Analyzer in dynamic strain sweep and dynamic frequency test modes. The chemical resistance was tested with methanol by using the swelling test method. Based on these results, the bio TPU synthesized with the ratio of 1:1:2.3, referred to as TPU 4, showed the highest thermal decomposition temperature, the largest molecular weight, and most compact matrix structure due to the highest ratio of the hard segment in the molecular structure. It also presented the highest tensile strength, the largest elongation, and the best viscoelastic properties among the different bio TPUs synthesized herein.

Membranes of Polyurethanes Containing Crystalline Soft Segments: Oxygen Permeability and Morphology

  • O, Hyo Jin;Kim, Wan Yeong;Jeong, Yong Seop;Lee, Yun Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.2
    • /
    • pp.194-198
    • /
    • 2001
  • In order to look for polymeric materials applicable to the oxygen electrode membranes of biosensors, polyurethanes (PUs) were synthesized from poly(butylene succinate) diol (Mn 1150), poly(ethylene glycol) (Mn 200), and 4,4'-methylenebis(cyclohexyl isocyanate). The PUs (Mn 15000-100000) underwent the crystallization and melting transitions in the temperature range of 20-30 $^{\circ}C$ and 90-110 $^{\circ}C$, respectively. The oxygen permeability for the PU membranes prepared by the solution casting method could not be measured since oxygen simply leaked through the membranes with an audible noise. However, when the PUs were blended with carboxylated poly(vinyl chloride) (CPVC), the permeability could be measured. The oxygen permeability coefficient (Po2) of the PU/CPVC $(96}4)$ membranes (6.4 Barrer) was high enough for the application as the electrode membranes. The Po2 decreased dramatically when the CPVC content increased from 4 to 5 wt%, but decreased very slowly and approached to that of CPVC (~0.26 Barrer) when the CPVC content increased further. The scanning electron micrographs of the membranes revealed that the PU membranes were composed of large crystal grains with many pores, but the size of the PU crystal grains and pores decreased progressively with increasing the CPVC content.

Preparation and Properties of Polyurethanes Containing Polycarbonate Polyol/Bio Polyol for Wet Type Artificial Leather (폴리카보네이트 폴리올/바이오 폴리올을 이용한 습식 인조피혁용 폴리우레탄의 제조 및 물성)

  • Sur, Suk-Hun;Ko, Jae-Wang;Choi, Pil-Jun;Lee, Jae-Yeon;Lee, Young-Hee;Kim, Han-Do
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.114-122
    • /
    • 2019
  • The synthesis of bio polyol from renewable resources has attracted attention in recent years. In particular, it is important to take advantage of bio polyols in the synthesis of polymers. In this study, a series of dimethylformamide (DMF) based polyurethanes were synthesized using polycarbonate polyol/bio polyol (PO3G: polytrimethylene ether glycol prepared from 1, 3-propanediol produced by fermentation from corn sugar), methylene diphenyl diisocyanate (MDI) and 1,4-butandiol (BD). The properties of prepared polyurethane films and the cell structure of wet type artificial leather were investigated. As the bio polyol content increased, the tensile strength of polyurethane films decreased, however, the elongation at break increased significantly. As a result of thermal characteristics analysis, the glass transition temperature of polyurethanes increased when increasing the content of polycarbonate polyol. As a result of comparing the cell characteristics of wet type artificial leathers prepared in this study, it was found that the number and uniformity of cells formed in the artificial leather samples increased when increasing the content of polycarbonate polyol in polycarbonate polyol/bio polyol. From these results, it was found that DMF-based polyurethane containing an appropriate amount of bio polyol could be used for wet type artificial leather. The bio textile analysis system according to ASTM standard was used to measure the bio carbon content of polyurethane. The content of bio carbon increased proportionally with the increase of bio polyol content used in polyurethane synthesis.