Browse > Article
http://dx.doi.org/10.7473/EC.2020.55.1.13

Pot Life Assessment and Mechanical Property of Fast Curing Polyurethane Developed with Eco-friendly Pre-polymer  

Joseph, Jessy (Department of Materials Engineering and Convergence Technology, RIGET, Gyeongsang National University)
Moon, Junho (Department of Materials Engineering and Convergence Technology, RIGET, Gyeongsang National University)
Kong, Tae Woong (Space-Aeronautics & Advanced Non-Metal Material Center)
Kim, Dong Ho (Space-Aeronautics & Advanced Non-Metal Material Center)
Oh, Jeong Seok (Department of Materials Engineering and Convergence Technology, RIGET, Gyeongsang National University)
Publication Information
Elastomers and Composites / v.55, no.1, 2020 , pp. 13-19 More about this Journal
Abstract
4,4'-Methylenebis(2-chlorobenzenamine) (MOCA)-free fast curing polyurethanes were prepared. In this study, the processibility of a fast curing polyurethane system was characterized by assessing the pot life. The obtained pot life of the polyurethane was 6-8 s, indicating that this prepolymer-curative system is appropriate for ribbon flow casting. The influence of the NCO index on the viscosity and mechanical properties was evaluated. The viscosity, tensile strength, tear strength, and hardness of the as-prepared polyurethanes showed an increasing trend, with an increase in the NCO index, whereas the elongation at break increased initially and then decreased with an increase in the NCO index. The gel fraction and crosslink density showed a direct correlation with the NCO index, which substantiated the improved mechanical properties at the higher NCO index. The coefficients of friction and abrasion deteriorated with an increase in the NCO index.
Keywords
polyurethane; fast curing polyurethane; ribbon flow processing; pot life;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 E. F. Cassidy, H. L. Frisch, H. X. Xiao, and K. C. Frisch, "Two-component interpenetrating polymer networks (Ipn's) from polyurethane and epoxies the use of modified liquid Moca as urethane curative", J. Elastom. Plast., 16, 2 (1984).
2 M. C. Celina, N. H. Giron, and M. R. Rojo, "An overview of high temperature micro-ATR IR spectroscopy to monitor polymer reactions", Polymer, 53, 4461 (2012).   DOI
3 B. Jousseaume, N. Noiret, M. Pereyre, A. Saux, and J. M. Frances, "Air activated organotin catalysts for silicone curing and polyurethane preparation", Organometallics, 13, 1034 (1994).   DOI
4 S. K. Rath, A. M. Ishack, U. G. Suryavansi, L. Chandrasekhar, and M. Patri, "Phase morphology and surface properties of moisture cured polyurethane-urea (MCPU) coatings: Effect of catalysts", Prog. Org. Coat, 62, 393 (2008).   DOI
5 M. A. Semsarzadeh and A. H. Navarchian, "Effects of NCO/OH ratio and catalyst concentration on structure, thermal stability, and crosslink density of poly(urethane-isocyanurate)", J. Appl. Polym. Sci., 90, 963 (2003).   DOI
6 A. B. Russfield, F. Homburger, E. Boger, C. G. Van Dongen, E. K. Weisburger, and J. H. Weisburger, "The carcinogenic effect of 4,4′-methylene-bis-(2-chloroaniline) in mice and rats", Toxicol. Appl. Pharm., 31, 47 (1975).   DOI
7 J. S. Osinski, "Characterization of fast-cure resins for reaction injection molding", Polym. Eng. Sci., 23, 756 (1983).   DOI
8 M. T. Cuksee and H. C. Allen, U.S. patent 4019933 (1977).
9 P. J. Flory and J. Rehner Jr, "Statistical mechanics of crosslinked polymer networks I. Rubberlike elasticity", J. Chem. Phys., 11, 512 (1943).   DOI
10 W. S. Na, K. H. Lee, T. W. Kong, J. Y. Baek, and J. S. Oh, "Tribological and Mechanical Properties of UHMWPE/HDPE Composites", Elast. Compos., 53, 234 (2018).   DOI
11 L. Caravia, D. Dowson, J. Fisher, P. H. Corkhill, and B. J. Tighe, "A comparison of friction in hydrogel and polyurethane materials for cushion-form joints", J. Mater. Sci. Mater. Med., 4, 515 (1993).   DOI
12 M. M. Rahman, H. D. Kim, and W. K. Lee, "Properties of crosslinked waterborne polyurethane adhesives with modified melamine: Effect of curing time, temperature, and HMMM content", Fiber Polym., 10, 6 (2009).   DOI
13 Z. S. Petrovic and J. Ferguson, "Polyurethane elastomers", Prog. Polym. Sci., 16, 695 (1991).   DOI
14 H. Ashrafizadeh, A. McDonald, and P. Mertiny, "Erosive and abrasive wear resistance of polyurethane liners: Aspects of Polyurethanes", ed. by F. Yilmaz, p. 131, Intech Publishers, Coratia, 2017.
15 A. Laber, "Selection of polyurethane for the friction pair of a drilling machine due to tribological properties", Tribologia, 5, 65 (2012).   DOI
16 O. Bayer, W. Siefken, H. Rinke, L. Orthner, and H. Schild (IG Farben), German Patent DRP 728981 (1937).
17 N. Zheng, Z. Fang, W. Q. Zou, Zhao, and T. Xie, "Thermoset shape-memory polyurethane with intrinsic plasticity enabled by transcarbamoylation", Angew. Chem. Int. Ed., 55, 11421 (2016).   DOI
18 A. Guo, I. Javni, and Z. Petrovic, "Rigid polyurethane foams based on soybean oil", J. Appl. Polym. Sci., 77, 467 (2000).   DOI
19 M. A. Osman, V. Mittal, M. Morbidelli, and U. W. Suter, "Polyurethane adhesive nanocomposites as gas permeation barrier", Macromolecules, 36, 9851 (2003).   DOI
20 A. Pei, J. M. Malho, J. Ruokolainen, Q. Zhou, and L. A. Berglund, "Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals", Macromolecules, 44, 4422 (2011).   DOI
21 J. Moon, S. B. Kwak, J. Y. Lee, D. Kim, J. U. Ha, and J. S. Oh, "Synthesis of polyurethane foam from ultrasonically decrosslinked automotive seat cushions", Waste Manag., 85, 557 (2019).   DOI
22 P. Krol, "Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers", Prog. Mater. Sci., 52, 915 (2007).   DOI
23 M. O. Okoroafor and K. C. Frisch, "Introduction to foams and foam formation. Handbook of plastic foams; types, properties, manufacture and applications", ed. by A. H. Landrock, p. 1-10, Noyes Publications, Park Ridge, 1995.