DOI QR코드

DOI QR Code

Synthesis and Characterization of waterborne polyurethane based on castor oil

Castor Oil 기반의 수분산 폴리우레탄의 합성 및 특성

  • Bae, Ji-Hong (Department of Polymer Science and Engineering, Pusan National University) ;
  • Kim, Eunyoung (Department of Polymer Science and Engineering, Pusan National University) ;
  • Kang, Kyung Seok (Department of Polymer Science and Engineering, Pusan National University) ;
  • Park, Duck-Jei (Seyoung Network Co. Ltd.)
  • 배지홍 (부산대학교 고분자공학과) ;
  • 김은영 (부산대학교 고분자공학과) ;
  • 강경석 (부산대학교 고분자공학과) ;
  • 박덕제 ((주)세영네트워크)
  • Received : 2017.07.27
  • Accepted : 2017.09.13
  • Published : 2017.12.31

Abstract

Waterborne polyurethanes(WPU) based on castor oil were successfully prepared using polycaprolactone diol(PCL), castor oil(CO) and 4,4'-methylene dicyclohexyl diisocyanate($H_{12}MDI$) as soft segment part, dimethylolbutanoic acid (DMBA) as emulsifier, and trimethylamine(TEA) as neutralizer based on different molecular weight of prepolymer. The various properties such as mechanical strength and surface reforming were evaluated using UTM, contact angle, FE-SEM based on the different molecular weight of polyol. Waterborne polyurethanes based on castor oil could be considered as a promising candidate to be applied the various adhesion fields.

본 연구에서는 polycaprolactone diol, castor oil과 4,4'-methylene dicyclohexyl diisocyanate 를 소프트 도메인으로, dimethylol butanoic acid를 내부 유화제로, trimethylamine을 중화제로 사용하여 다른 분자량을 가지는 prepolymer를 기초로 castor oil 기반의 수분산 폴리우레탄을 성공적으로 합성하였다. 분자량 변화에 따른 기계적인 물성 변화(UTM), 표면의 친수성 확인(contact angle), castor oil 유무에 따른 표면개질 변화(FE-SEM) 등을 평가 분석하였다. Castor oil 기반의 수분산 폴리우레탄의 경우 표면 친수성 향상 및 개질 변화를 기대할 수 있으며, 다양한 접착제 분야에 적용될 유망한 후보 물질로 여겨질 수 있을 것으로 예상된다.

Keywords

References

  1. B. S. Lee, B. C. Chun, Y. C. Chung, K. I. Sul, and J. H. Cho, J. Appl. Polym. Sci., 83: 27-37, (2002). https://doi.org/10.1002/app.2228
  2. B. K. Kim, Y. J. Shin, S. M. Cho, and H. M. Jeong, J. Polym. Sci.: Polym. Phys., 38, 2652-2657, (2000).
  3. J. Hu, Z. Yang, L. Yeung, F. Ji, and Y. Liu, Polym. Int., 54, 854-859, (2005). https://doi.org/10.1002/pi.1785
  4. J. M. Cheon, B. Y. Jeong, C. S. Yoo, D. J. Park, J. K. Bae, and J. H. Chun, J. Adhesion and Interface, 8, No.4, (2007).
  5. S. H. Lee, J. M. Cheon, B. Y. Jeong, H. D. Kim, and J. H. Chun,, J. Adhesion and Interface, 16, No.4, (2015).
  6. B. Y. Jeong, J. M. Cheon, and J. H. Chun, J. Adhesion and Interface, 13, No.3, (2013).
  7. J. M. Cheon, B. Y. Jeong, C. S. Yoo, D. J. Park, and J. H. Chun, J. Adhesion and Interface, 9, No.4, (2008).
  8. S. Thakur, and N. Karak, Prog. Org. Coat., 76, 157-164, (2013). https://doi.org/10.1016/j.porgcoat.2012.09.001
  9. F. Abdolhosseini, and K. B. Givi, J. Appl. Polym. Sci., 6(1), 18-27, (2016).
  10. M. Brinkmann, and P. Rannou, Macromolecules, 42 (4), 1125-1130, (2009). https://doi.org/10.1021/ma8023415
  11. K. Yoshioka, E. Sakai, M. Daimon, and A. Kitahara, J. Am. Ceram. Soc., 80 [10], 2667-71, (1997). https://doi.org/10.1111/j.1151-2916.1997.tb03169.x
  12. A. K. Geim, S. V. Dubonos, I. V. Grigorieva, K. S. Novoselov, A. A. Zhukov, and S. Y. Shapoval, Nature materials, 2, 461-463, (2003). https://doi.org/10.1038/nmat917