Browse > Article
http://dx.doi.org/10.4313/TEEM.2017.18.4.211

A Comparison of the Dielectric Behavior of Aromatic and Aliphatic Polyurethanes in Relation to Transitional Phenomena  

Kim, Chy Hyung (Department of Applied Chemistry, Cheongju University)
Publication Information
Transactions on Electrical and Electronic Materials / v.18, no.4, 2017 , pp. 211-216 More about this Journal
Abstract
The dielectric properties of two polyurethanes (PUs) with different hard segments, i.e., aromatic methylene di-p-phenyl diisocyanate (MDI) and aliphatic hexamethylene diisocyanate (HDI), were investigated in the temperature range of -100 to $100^{\circ}C$ and in the frequency range of 1 Hz to 3 kHz. The ${\alpha}$-relaxations induced by the glass transition of the equivalent soft segments in the two PUs occurred at relaxation times of ${\tau}=3.46{\times}10^{-3}s$ for MDI-PU and ${\tau}=3.39{\times}10^{-2}s$ for HDI-PU at $-20^{\circ}C$, in accord with the temperature-frequency superposition principle, resulting in similar shifting factors. However, different I-relaxations were observed for the two PUs. The I-relaxation of MDI-PU occurred due to the mobility of the chain extenders near $80^{\circ}C$ with a slower shifting rate than the ${\alpha}$-relaxation. On the other hand, I-relaxation arising from both the extender and the unconstrained hard segments of HDI-PU occurred at $70{\sim}100^{\circ}C$, indicating complicated dielectric behavior due to partial interaction with the ${\alpha}$-relaxation at high frequencies. Thus, the I-relaxation of HDI-PU did not follow the superposition principle. The dielectric behaviors of the PUs were mainly influenced by their phase transitions, which were affected by the structure and components of the materials.
Keywords
MDI-polyurethane; HDI-polyurethane; Dielectric relaxation; Temperature-frequency superposition principle; Shifting factor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. Yin, M. Lallart, P. J. Cottinet, D. Guyomar, and J. F. Capsal, Appl. Phys. Lett., 108, 042901 (2016). [DOI: http://dx.doi.org/10.1063/1.4939859]   DOI
2 F. Carpi, I. Anderson, S. Bauer, G. Frediani1, G. Gallone, M. Gei, C. Graaf, C. Jean-Mistral, W. Kaal, G. Kofod, M. Kollosche, R. Kornbluh, B. Lassen, M. Matysek, S. Michel, S. Nowak, B. O'Brien, Q. Pei, R. Pelrine, B. Rechenbach, S. Rosset, and H. Shea, Smart Mater. Struct., 24, 105025 (2015). [DOI: http://dx.doi.org/10.1088/0964-1726/24/10/105025]   DOI
3 F. Carpi, S. Bauer, and D. De Rossi, Science, 330, 1759 (2010). [DOI: http://dx.doi.org/10.1126/science.1194773]   DOI
4 R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, Science, 287, 836 (2000). [DOI: http://dx.doi.org/10.1126/science.287.5454.836]   DOI
5 Y. Bar-Cohen and C. Breazeal, Biologically-Inspired Intelligent Robots (SPIE Press, Bellingham, Washington, USA, 2003) p. 1-393.
6 P. Brochu and Q. Pei, Macromol. Rapid Commun., 31, 10 (2010). [DOI: http://dx.doi.org/10.1002/marc.200900425]   DOI
7 Y. Bar-Cohen, Electroactive Polymer (EAP) Actuators as Artificial Muscles-Reality, Potential and Challenges (2nd Ed. SPIE Press, Bellingham, Washington, USA, 2004) p.1-765.
8 F. M. Guillot and E. Balizer, J. Appl. Polym. Sci., 89, 399 (2003). [DOI: http://dx.doi.org/10.1002/app.12096]   DOI
9 K. Petcharoen and A. Sirivat, Curr. Appl. Phys., 13, 119 (2013). [DOI: http://dx.doi.org/10.1016/j.cap.2013.03.005]
10 T. Sugimoto, K. Ono, A. Ando, Y. Morita, K. Hosoda, and D. Ishii, J. Acoust. Soc. Am.,130, 744 (2011). [DOI: http://dx.doi.org/10.1121/1.3605561]   DOI
11 T. Chen, J. Qiu, K. Zhu, and J. Li, Mater. Des., 90, 1069 (2016). [DOI: http://dx.doi.org/10.1016/j.matdes.2015.11.068]   DOI
12 R. Pelrine, R. Kornbluh, and G. Kofod, Adv. Mater., 12, 1223 (2000). [DOI: http://dx.doi.org/10.1002/1521-4095(200008)12:16<1223::AID-ADMA1223>3.0.CO;2-2]   DOI
13 M. Zhenyi, J. I. Scheinbeim, J. W. Lee, and B. A. Newman, J. Polym. Science B Poly. Phys., 32, 2721 (1994). [DOI: http://dx.doi.org/10.1002/polb.1994.090321618]   DOI
14 H. Wang, Q. M. Zhang, L. E. Cross, R. Ting, C. Coughlin, and K. Rittenmyer, Proc. 1994 IEEE Int. Sym. Appl. Ferro. (State College, PA, U.S.A., 1994) p. 182.
15 Z. Y. Cheng, S. Yilmaz, W. Wirges, S. Bauer-Gogonea, and S. Bauer, J. Appl. Phys., 83, 7799 (1998). [DOI: http://dx.doi.org/10.1063/1.367954]   DOI
16 V. O. Potolinca, E. Buruiana, and S. Oprea, J. Polym. Res., 20, 237 (2013). [DOI: http://dx.doi.org/10.1007/s10965-013-0237-y]   DOI
17 K. Yoshiba, T. Satomi, T. Ishii, and T. Dobashi, Polym. Int., 65, 1214 (2016). [DOI: http://dx.doi.org/10.1002/pi.5177]   DOI
18 M. A. Elsawy, G. R. Saad, and A. M. Sayed, Polym. Eng. Sci., 56, 987 (2016). [DOI: http://dx.doi.org/10.1002/pen.24328]   DOI
19 S. Anandhan and H. S. Lee, J. Elastomers Plast., 46, 196 (2012). [DOI: http://dx.doi.org/10.1177/0095244312465300]
20 I. Javni, W. Zhang, and Z. S. Petrovic, J. Appl. Polym. Sci., 88, 2912 (2003). [DOI: http://dx.doi.org/10.1002/app.11966]   DOI
21 J. D. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1980) p. 264.
22 J. Su, Q. M. Zhang, C. H. Kim, R. Y. Ting, and R. Capps, J. Appl. Polym. Sci., 65, 1363 (1997). [DOI: http://dx.doi.org/10.1002/(SICI)1097-4628(19970815)65:7<1363::AID-APP14>3.0.CO;2-W]   DOI
23 N. G. McCrum, B. E. Read, and G. Williams, Aneleastic and Dielectric Effects in Polymeric Solids (Dover, New York, 1967) p. 117.
24 Y. H. Zhan, R. Patel, M. Lavorgna, F. Piscitelli, A. Khan, H. S. Xia, H. Benkreira, and P. Coates, J. Plastics, Rubber and Composites, 39, 400 (2010). [DOI: http://dx.doi.org/10.1179/174328910X12777566997496]   DOI