DOI QR코드

DOI QR Code

A Comparison of the Dielectric Behavior of Aromatic and Aliphatic Polyurethanes in Relation to Transitional Phenomena

  • Kim, Chy Hyung (Department of Applied Chemistry, Cheongju University)
  • Received : 2017.04.03
  • Accepted : 2017.06.05
  • Published : 2017.08.25

Abstract

The dielectric properties of two polyurethanes (PUs) with different hard segments, i.e., aromatic methylene di-p-phenyl diisocyanate (MDI) and aliphatic hexamethylene diisocyanate (HDI), were investigated in the temperature range of -100 to $100^{\circ}C$ and in the frequency range of 1 Hz to 3 kHz. The ${\alpha}$-relaxations induced by the glass transition of the equivalent soft segments in the two PUs occurred at relaxation times of ${\tau}=3.46{\times}10^{-3}s$ for MDI-PU and ${\tau}=3.39{\times}10^{-2}s$ for HDI-PU at $-20^{\circ}C$, in accord with the temperature-frequency superposition principle, resulting in similar shifting factors. However, different I-relaxations were observed for the two PUs. The I-relaxation of MDI-PU occurred due to the mobility of the chain extenders near $80^{\circ}C$ with a slower shifting rate than the ${\alpha}$-relaxation. On the other hand, I-relaxation arising from both the extender and the unconstrained hard segments of HDI-PU occurred at $70{\sim}100^{\circ}C$, indicating complicated dielectric behavior due to partial interaction with the ${\alpha}$-relaxation at high frequencies. Thus, the I-relaxation of HDI-PU did not follow the superposition principle. The dielectric behaviors of the PUs were mainly influenced by their phase transitions, which were affected by the structure and components of the materials.

Keywords

References

  1. X. Yin, M. Lallart, P. J. Cottinet, D. Guyomar, and J. F. Capsal, Appl. Phys. Lett., 108, 042901 (2016). [DOI: http://dx.doi.org/10.1063/1.4939859]
  2. F. Carpi, I. Anderson, S. Bauer, G. Frediani1, G. Gallone, M. Gei, C. Graaf, C. Jean-Mistral, W. Kaal, G. Kofod, M. Kollosche, R. Kornbluh, B. Lassen, M. Matysek, S. Michel, S. Nowak, B. O'Brien, Q. Pei, R. Pelrine, B. Rechenbach, S. Rosset, and H. Shea, Smart Mater. Struct., 24, 105025 (2015). [DOI: http://dx.doi.org/10.1088/0964-1726/24/10/105025]
  3. F. Carpi, S. Bauer, and D. De Rossi, Science, 330, 1759 (2010). [DOI: http://dx.doi.org/10.1126/science.1194773]
  4. R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, Science, 287, 836 (2000). [DOI: http://dx.doi.org/10.1126/science.287.5454.836]
  5. Y. Bar-Cohen and C. Breazeal, Biologically-Inspired Intelligent Robots (SPIE Press, Bellingham, Washington, USA, 2003) p. 1-393.
  6. P. Brochu and Q. Pei, Macromol. Rapid Commun., 31, 10 (2010). [DOI: http://dx.doi.org/10.1002/marc.200900425]
  7. Y. Bar-Cohen, Electroactive Polymer (EAP) Actuators as Artificial Muscles-Reality, Potential and Challenges (2nd Ed. SPIE Press, Bellingham, Washington, USA, 2004) p.1-765.
  8. F. M. Guillot and E. Balizer, J. Appl. Polym. Sci., 89, 399 (2003). [DOI: http://dx.doi.org/10.1002/app.12096]
  9. K. Petcharoen and A. Sirivat, Curr. Appl. Phys., 13, 119 (2013). [DOI: http://dx.doi.org/10.1016/j.cap.2013.03.005]
  10. T. Sugimoto, K. Ono, A. Ando, Y. Morita, K. Hosoda, and D. Ishii, J. Acoust. Soc. Am.,130, 744 (2011). [DOI: http://dx.doi.org/10.1121/1.3605561]
  11. T. Chen, J. Qiu, K. Zhu, and J. Li, Mater. Des., 90, 1069 (2016). [DOI: http://dx.doi.org/10.1016/j.matdes.2015.11.068]
  12. R. Pelrine, R. Kornbluh, and G. Kofod, Adv. Mater., 12, 1223 (2000). [DOI: http://dx.doi.org/10.1002/1521-4095(200008)12:16<1223::AID-ADMA1223>3.0.CO;2-2]
  13. M. Zhenyi, J. I. Scheinbeim, J. W. Lee, and B. A. Newman, J. Polym. Science B Poly. Phys., 32, 2721 (1994). [DOI: http://dx.doi.org/10.1002/polb.1994.090321618]
  14. H. Wang, Q. M. Zhang, L. E. Cross, R. Ting, C. Coughlin, and K. Rittenmyer, Proc. 1994 IEEE Int. Sym. Appl. Ferro. (State College, PA, U.S.A., 1994) p. 182.
  15. V. O. Potolinca, E. Buruiana, and S. Oprea, J. Polym. Res., 20, 237 (2013). [DOI: http://dx.doi.org/10.1007/s10965-013-0237-y]
  16. K. Yoshiba, T. Satomi, T. Ishii, and T. Dobashi, Polym. Int., 65, 1214 (2016). [DOI: http://dx.doi.org/10.1002/pi.5177]
  17. M. A. Elsawy, G. R. Saad, and A. M. Sayed, Polym. Eng. Sci., 56, 987 (2016). [DOI: http://dx.doi.org/10.1002/pen.24328]
  18. Z. Y. Cheng, S. Yilmaz, W. Wirges, S. Bauer-Gogonea, and S. Bauer, J. Appl. Phys., 83, 7799 (1998). [DOI: http://dx.doi.org/10.1063/1.367954]
  19. S. Anandhan and H. S. Lee, J. Elastomers Plast., 46, 196 (2012). [DOI: http://dx.doi.org/10.1177/0095244312465300]
  20. I. Javni, W. Zhang, and Z. S. Petrovic, J. Appl. Polym. Sci., 88, 2912 (2003). [DOI: http://dx.doi.org/10.1002/app.11966]
  21. J. D. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1980) p. 264.
  22. J. Su, Q. M. Zhang, C. H. Kim, R. Y. Ting, and R. Capps, J. Appl. Polym. Sci., 65, 1363 (1997). [DOI: http://dx.doi.org/10.1002/(SICI)1097-4628(19970815)65:7<1363::AID-APP14>3.0.CO;2-W]
  23. Y. H. Zhan, R. Patel, M. Lavorgna, F. Piscitelli, A. Khan, H. S. Xia, H. Benkreira, and P. Coates, J. Plastics, Rubber and Composites, 39, 400 (2010). [DOI: http://dx.doi.org/10.1179/174328910X12777566997496]
  24. N. G. McCrum, B. E. Read, and G. Williams, Aneleastic and Dielectric Effects in Polymeric Solids (Dover, New York, 1967) p. 117.