• 제목/요약/키워드: Polyolefin

Search Result 155, Processing Time 0.057 seconds

Effect of Mineral Admixture on Bond Properties between Polyolefin Based Synthetic Fiber and Cement Mortar (폴리올레핀계 합성 섬유와 시멘트 모르타르와의 부착 특성에 미치는 광물질 혼화재의 효과)

  • Lee, Jin-Hyeong;Park, Chan-Gi
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.339-346
    • /
    • 2011
  • The effects of mineral admixtures on the bonding properties of cement mortar to polyolefin based synthetic fiber were evaluated. The mineral admixtures consisted of 0%, 5%, 10%, and 15% fly ash, blast furnace slag, and metakaolin in cement. Bond interactions between the cement mortar and the polyolefin based synthetic fiber were determined by Dog-bone bond tests. Bond tests of the polyolefin based synthetic fiber showed an increase in pullout load with the strength of the cement mortar. Also, the interface toughness of polyolefin based synthetic fiber in cement mortar increased as the fly ash, blast furnace slag, and metakaolin contents increased. The microstructure of polyolefin based synthetic fiber surface was examined after the pullout test to analyze the frictional resistant force according to the replacement ratio of fly ash, blast furnace slag, and metakaolin during the pullout process of polyolefin based synthetic fiber in cement mortar. The scratched of polyolefin based synthetic fibers increased with the replacement ratio of fly ash, blast furnace slag, and metakaolin. Also, the interface toughness was enhanced by adhesion forces induced by the fly ash, blast furnace slag, and metakaolin.

Preparation and Properties of Fireproofing Polyolefin Compound Using Nano Clay (Nano Clay를 이용한 난연성 Polyolefin Compound의 제조 및 특성에 관한 연구)

  • Kang, Doo-Whan;Huh, June
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.165-172
    • /
    • 2003
  • Fireproofing polyolefin nanocomposite for the application of power distributing panel was prepared by compounding linear low density polyethylene(LLDPE), decabromodiphenyl oxide (DBDPO), $Sb_2O_3$ as flame retardant agents, and modified nano clay as filler. The optimized formulation ratio of compounds to prepare the fireproofing polyolefin nanocomposite was obtained. The flame retardant properties for nanocomposite prepared by compounding 22.5 phr of nano clay and 18 phr of DBDPO based on 100 phr of LLDPE were shown that the combustion time. 10${\sim}$18 s, combustion distance, 12${\sim}$15 mm and non-melt dropping characteristics. In particular. the content of DBDPO in nanocomposite could be decreased to 18 phr from 40 phr DBDPO for fireproofing composite containing 30 phr of clay. The electrical properties measured from tracking test, had an excellent antitracking properties by not showing the phenomenon of leakage current and sparking.

Changes in Acid Graft Ratio and Al-CPP Lamination Peel Strength by Polyolefin Reaction Conditions (폴리올레핀의 반응 조건별 산변성도 변화 및 Al-CPP 라미네이션 박리강도 변화)

  • Jong Hyun Park;Hong Jun Chae
    • Journal of Adhesion and Interface
    • /
    • v.25 no.1
    • /
    • pp.152-156
    • /
    • 2024
  • We conducted research on a two-component epoxy adhesive material based on acid graft polyolefin using maleic anhydride to address the lack of formability due to epoxy adhesives' hard segments. To understand the graft efficiency according to reaction conditions, we conducted studies based on polyolefin molecular weight, initiator half-life, and initiator concentration for each process. The maleic anhydride grafted polyolefin produced was used as an adhesive material for aluminum and CPP film lamination after mixing with epoxy hardener. The graft efficiency in the solution process was approximately 30% superior to that in the melt process, and an increase in graft ratio confirmed an increase in peel strength.

Preparation of Polyolefin Based Segmented Copolymers Through Controlled Radical Polymerization Technique (조절 라디칼 중합법에 의한 폴리올레핀 기반 분절 공중합체의 제조)

  • Hong, Sung-Chul;Lee, Seong-Hoon;Cho, Hyun-Chul
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.209-221
    • /
    • 2009
  • Polyolefins are important commodity polymers with the largest volume of business owing to their outstanding combination of cost performance and excellent physical properties. However, the lack of functional groups often has limited their end uses, such as compatibilizer, modifier and adhesive, where the interaction with other materials is especially important. The incorporation of functional groups as polymer segments to afford block or graft polyolefin copolymers has been extensively investigated in the context of the functional polyolefin hybrids. Living polymerization processes have been considered to be an efficient method to prepare the polyolefin hybrids with precisely controlled architecture and compositions. Among the living polymerization techniques, controlled/"living" radical polymerization (CRP) methods are very effective not only because of the controllability of polymerization but also because of the versatility of monomers and polymerization conditions. In this review paper, progresses on the preparations of polyolefin graft or block copolymers through CRP techniques are summarized. The commodity polymers such as polyisobutylene, polyethylene and polypropylene are combined with polar segments such as polyacrylate, polymethacrylate, polystyrene to yield functionalized polyolefins.

Drug Adsorption Behavior of Polyolefin Infusion Tube Compared to PVC and PU (Non-PVC(폴리올레핀) 수액용 튜브 내면에서의 약물흡착 거동 - PVC 및 PU 수액튜브와의 비교)

  • Park, Kang Hoon;Park, Chang Kyu;Park, Jong;Jeon, Seungho;Bang, Sa-Ik;Kim, Ji-Heung;Chung, Dong June
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.333-337
    • /
    • 2014
  • PVC (polyvinyl chloride) intravenous fluid bags and tubes that contain DEHP (diethylhexyl phthalate) as a plasticizer have several associated disadvantages for intravenous injections. We investigated the drug absorption behaviors on the inner surface of an infusion tube that consisted of commercialized PVC/PU (polyurethane). We developed a non-PVC (polyolefin) tube in order to improve the efficacy of this drug administration method. We prepared four types of non-PVC (polyolefin) infusion tubes using a polyethylene (PE), polypropylene (PP), syndiotactic 1,2-polybutadiene (PB), and styrene-ethylene (SE) copolymer elastomers were prepared using a single screw extruder. The four types of manufactured non-PVC (polyolefin) infusion tubes had good mechanical properties that were equivalent to PVC tube properties. The four types of prepared non-PVC (polyolefin) infusion tubes also prohibited drug absorption when compared to the commercialized PVC and PU tubes. Therefore, based on the results of this study, prepared non-PVC (polyolefin) tubes are good candidates for infusion because they prevent drug absorption and the release of DEHP.

Behaviour of hybrid fibre reinforced concrete beams strengthened with GFRP laminates

  • Ibrahim, S. Syed;Eswari, S.;Sundararajan, T.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.631-636
    • /
    • 2018
  • This study aims to investigate the flexural behaviour of glass fibre reinforced polymer (GFRP) laminated hybrid fibre reinforced concrete (HFRC) beams. The flexural and ductility performance of GFRP laminated HFRC beams having different proportions of polyolefin and steel fibres with 1.0% of total volume fraction were investigated. The parameters of this investigation included: load and deflection at first crack, yield, and ultimate stages, ductility and crack width. A total of seven beams of $150{\times}250mm$ in cross-section were tested in the laboratory over an effective span of 2800 mm. One reinforced concrete (RC) beam without any internal or external GFRP was taken as the reference beam. Of the remaining six beams, one beam was strengthened with GFRP, one beam with 100% steel fibres was strengthened with GFRP and four beams, each with different volume proportions of polyolefin and steel fibres (20:80, 30:70, 40:60, 50:50) were strengthened with GFRP. All the above beams were tested until failure. The experimental results show that a fibre volume proportion of 40:60 (polyolefin-steel) has significantly improved the overall performance of the tested beams.

Study on Halogen Free Low Smoke Polyolefin (할로겐이 없는 저연성 폴리올레핀에 관한 연구)

  • Kim, Young-Doo;Chung, Kwang-Soo;Kim, Tae-Ho
    • Elastomers and Composites
    • /
    • v.37 no.3
    • /
    • pp.177-182
    • /
    • 2002
  • For low-smoke-type polyolefin compound, LDPE, EVA, and EEA as base resin, magnesium trihydrate, alumina trihydrate, and red phosphorous as flame retardant and MAH type compatibilizer were applied. The amount of each component was changed to find out optimum composition. Mechanical properties were obtained by tensile test and residual stress after aging and flame retardancy was evaluated by smoke density, LOI(Limit Oxygen Index), and UL-94 test. SEM was used for the investigation or morphology and halogen contents were obtained by measuring the amount of HCI. Two kinds of halogen free compositions for flame retardant and low smote resin were found and it is expected to be applied for various purposes.

Modification and Properties of Polyolefin with Maleic Anhydride as a Functional Monomer (관능성 단량체로서 Maleic Anhydride를 이용한 Polyolefin의 개질 및 물성)

  • Mo, Jong-Hun;Lee, Jae-Seok;Choi, Im-Cheol;Lee, Won-Kee;Park, Sang-Bo;Min, Seong-Kee;Park, Chan-Young
    • Elastomers and Composites
    • /
    • v.47 no.2
    • /
    • pp.162-167
    • /
    • 2012
  • Surface modification of macromolecules renders a progressive and favorable method to enhance the properties of polymeric materials and improves conductivity, wettability, stability, adhesion, antibacterial properties, etc. of polymeric surfaces without deterioration of the polymer bulk properties. Polyolefins such as polyethylene and polypropylene were grafted with maleic anhydride(MAH) as a functional monomer in solution. Evidence for grafting was shown with FTIR measurement. The grafting ratio was determined from chemical titration. The higher MAH loading, the lower contact angle(${\theta}$) was obtained. With the increasing content of MAH, melting temperature($T_m$) of maleic anhydride grafted polymer decreased while decomposition temperature($T_d$) of maleic anhydride grafted polymer increased.

Strength Modeling of Mechanical Strength of Polyolefin Fiber Reinforced Cementitious Composites

  • Sakthievel, P.B.;Ravichandran, A.;Alagumurthi, N.
    • Journal of Construction Engineering and Project Management
    • /
    • v.4 no.2
    • /
    • pp.41-46
    • /
    • 2014
  • RCC consumes large quantities of natural resources like gravel stone and steel, and there is a need to investigate on an innovative material that utilizes limited quantities of natural resources but should have good mechanical strength. This study deals with the experimental investigation of strength evaluation of cementitious composites reinforced with polyolefin fibers from 0% to 2.5% (with interval of 0.5%), namely Polyolefin Fiber Reinforced Cementitious Composites (PL-FRCC) and developing statistical regression models for compressive strength, splitting-tensile strength, flexural strength and impact strength of PL-FRCC. Paired t-tests (for each PL fiber percentage 0 to 2.5%) bring out that there is significant difference in compressive and splitting-tensile strength when curing periods (3, 7, 28 days) are varied. Also, a strong relationship exists between the compressive and flexural strength of PL-FRCC. The proposed mathematical models developed in this study will be helpful to ascertain the mechanical strength of FRCC, especially, when the fiber reinforcing index is varied.