DOI QR코드

DOI QR Code

관능성 단량체로서 Maleic Anhydride를 이용한 Polyolefin의 개질 및 물성

Modification and Properties of Polyolefin with Maleic Anhydride as a Functional Monomer

  • 모종헌 (부경대학교 공과대학 고분자공학과) ;
  • 이재석 (부경대학교 공과대학 고분자공학과) ;
  • 최임철 (부경대학교 공과대학 고분자공학과) ;
  • 이원기 (부경대학교 공과대학 고분자공학과) ;
  • 박상보 (부경대학교 공과대학 고분자공학과) ;
  • 민성기 (부경대학교 공과대학 고분자공학과) ;
  • 박찬영 (부경대학교 공과대학 고분자공학과)
  • Mo, Jong-Hun (Department of Polymer Engineering, Pukyong National University) ;
  • Lee, Jae-Seok (Department of Polymer Engineering, Pukyong National University) ;
  • Choi, Im-Cheol (Department of Polymer Engineering, Pukyong National University) ;
  • Lee, Won-Kee (Department of Polymer Engineering, Pukyong National University) ;
  • Park, Sang-Bo (Department of Polymer Engineering, Pukyong National University) ;
  • Min, Seong-Kee (Department of Polymer Engineering, Pukyong National University) ;
  • Park, Chan-Young (Department of Polymer Engineering, Pukyong National University)
  • 투고 : 2012.04.02
  • 심사 : 2012.04.26
  • 발행 : 2012.06.30

초록

거대분자의 표면개질은 고분자재료의 물성을 향상시키기 위한 점진적이고 바람직한 방안을 제공하며 고분자의 주요 물성을 손상시키지 않고 고분자 표면의 전도도, 젖음성, 안정성, 접착 및 항박테리아성 등을 개선시킨다. PE 또는 PP 등의 polyolefin을 관능성 단량체로서 MAH와 용액상에서 그래프트시켰다. FTIR측정을 통하여 그래프팅이 일어났음을 확인하였다. 그래프팅율은 화학적정에 의하여 결정하였다. MAH량이 많아질수록 접촉각은 낮은 값을 얻었다. 또한 MAH량이 증가함에 따라 polyolefin-g-MAH의 융점($T_m$)은 감소하는 한편 분해온도($T_d$)는 증가하는 경향을 보였다.

Surface modification of macromolecules renders a progressive and favorable method to enhance the properties of polymeric materials and improves conductivity, wettability, stability, adhesion, antibacterial properties, etc. of polymeric surfaces without deterioration of the polymer bulk properties. Polyolefins such as polyethylene and polypropylene were grafted with maleic anhydride(MAH) as a functional monomer in solution. Evidence for grafting was shown with FTIR measurement. The grafting ratio was determined from chemical titration. The higher MAH loading, the lower contact angle(${\theta}$) was obtained. With the increasing content of MAH, melting temperature($T_m$) of maleic anhydride grafted polymer decreased while decomposition temperature($T_d$) of maleic anhydride grafted polymer increased.

키워드

참고문헌

  1. K.E. Russell, "Free radical graft polymerization and copolymerization at higher temperatures", Prog Polym Sci, 27, 1007 (2002). https://doi.org/10.1016/S0079-6700(02)00007-2
  2. J. Gao, J.X. Lei, Z.J. Su, B.S. Zhang, and J. Wang, "Photografting of maleic anhydride on low density polyethylene powder in the vapor phase", Polym J, 33, 147 (2001). https://doi.org/10.1295/polymj.33.147
  3. G. Moad, "The synthesis of polyolefin graft copolymers by reactive extrusion", Prog Polym Sci, 24, 81 (1999). https://doi.org/10.1016/S0079-6700(98)00017-3
  4. E. Boucher, J.P. Folkers, H. Hervet, L. Leger, and C. Creton, "Effects of the formation of copolymer on the interfacial adhesion between semicrystalline polymers", Macromolecules, 29, 774 (1996). https://doi.org/10.1021/ma9509422
  5. W.L. Qiu, F.R. Zhang, T. Endo, and T. Hirotsu, "Preparation and characteristics of composites of high-crystalline cellulose with Polypropylene: effects of maleated polypropylene and cellulose content", J Appl Polym Sci, 87, 337 (2003). https://doi.org/10.1002/app.11446
  6. G. Samay, T. Nagy, and J.L. White, "Grafting maleic anhydride and comonomers onto polyethylene", J Appl Polym Sci, 56, 1423 (1995). https://doi.org/10.1002/app.1995.070561105
  7. B. De Roover, M. Sclavons, V. Carlier, J. Devaux, R. Legras, and A. Momtaz, "Molecular characterization of maleic anhydride- functionalized polypropylene", J Polym Sci Polym Chem, 33, 829 (1995). https://doi.org/10.1002/pola.1995.080330509
  8. D.A. Shi, J.H. Yang, Z.H. Yao, Y. Wang, H.L. Huang, W. Jing et al., "Functionalization of isotactic polypropylene with maleic anhydride by reactive extrusion: mechanism of melt grafting", Polymer, 42, 5549 (2001). https://doi.org/10.1016/S0032-3861(01)00069-6
  9. K.E. Russell, "Free radical graft polymerization and copolymerization at higher temperatures", Prog Polym Sci, 27, 1007 (2002). https://doi.org/10.1016/S0079-6700(02)00007-2
  10. C.J. Wu, C.Y. Chen, G. Woo, and J.F. Kuo, "A kinetic study on grafting of maleic anhydride onto a thermoplastic elastomer", J Polym Sci Polym Chem, 31, 3405 (1993). https://doi.org/10.1002/pola.1993.080311329
  11. A.V. Machado, J.A. Covas, and M. van Duin, "Effect of polyolefin structure on maleic anhydride grafting", Polymer, 42, 3649 (2001). https://doi.org/10.1016/S0032-3861(00)00692-3
  12. B. De Roover, J. Devaux, and R. Legras, "Maleic anhydride homopolymerization during melt functionalization of isotactic polypropylene", J Polym Sci Polym Chem, 34, 1195 (1996). https://doi.org/10.1002/(SICI)1099-0518(199605)34:7<1195::AID-POLA5>3.0.CO;2-2
  13. R. Rengarajan, M. Vicic, and S. Lee, "Solid phase graft copolymerization. I. Effect of initiator and catalyst", J Appl Polym Sci, 39, 1783 (1990). https://doi.org/10.1002/app.1990.070390815
  14. M. Lazár, L. Hrčková, A. Fiedlerová, E. Borsig, M. Rätzsch, and A. Hesse, "Functionalization of isotactic poly(propylene) with maleic anhydride in the solid phase", Die Angew Makromol Chem, 243, 57 (1996). https://doi.org/10.1002/apmc.1996.052430105
  15. I. Kaur, B.N Misra, and R. Barsola, "Radiation-induced graft polymerization of vinyl monomers onto polyamide-6", Angew. Macromol. Chem., 1, 234 (1996).
  16. Mishra BN, Mehta IK, and Khetrapal RC, "Grafting onto cellulose. VIII. Graft copolymerization of poly(ethylacrylate) onto cellulose by use of redox initiators. Comparison of initiator reactivities", J Polym Sci Polym Chem, 22, 2767 (1984). https://doi.org/10.1002/pol.1984.170221103
  17. Pepenzhik MA, Virnik AD, and Rogovin ZA, "Synthesis of graft cellulose copolymers and calcium salt of poly(acrylic acid)", Vysokomol Soedin Ser B, 11, 245 (1969).
  18. Misra BN, Dogra R, and Mehta IK, "Grafting onto cellulose. V. Effect of complexing gents on Fenton's Reagent (Fe2þ- $H_{2}O_{2}$) initiated grafting of poly (ethyl acrylate)", J Polym Sci Polym Chem, 18, 749 (1980). https://doi.org/10.1002/pol.1980.170180234
  19. Hsueh CL, Peng YJ, Wang CC, and Chen CY, "Bipolar membrane prepared by grafting and plasma polymerization", J Membr Sci, 219, 1 (2003). https://doi.org/10.1016/S0376-7388(03)00106-6
  20. Han TL, Kumar RN, Rozman HD, and Md Noor MA, "GMA grafted sago starch as a reactive component in ultraviolet radiation curable coatings", Carbohydr Polym, 54, 509 (2003). https://doi.org/10.1016/j.carbpol.2003.08.001
  21. Mishra BN, Mehta IK, and Khetrapal RC, "Grafting onto cellulose. VIII. Graft copolymerization of poly(ethylacrylate) onto cellulose by use of redox initiators. Comparison of initiator reactivities", J Polym Sci Polym Chem, 22, 2767 (1984). https://doi.org/10.1002/pol.1984.170221103
  22. Prasanth KVH and Tharanathan RN, "Studies on graft copolymerization of chitosan with synthetic monomers", Carbohydr Polym, 54, 43 (2003). https://doi.org/10.1016/S0144-8617(03)00151-6
  23. Bajpai UDN, Jain A, and Ray S, "Grafting of polyacrylamide onto guar gum using ascorbic acid redox initiator", J Appl Polym Sci, 39, 2187 (1990). https://doi.org/10.1002/app.1990.070391101
  24. N. G. Gaylord and M. K. Mishra, "Nondegradative reaction of maleic anhydride and molten polypropylene in the presence of peroxides", J. Polym. Sci. Polym. Lett. Ed., 21, 23 (1983). https://doi.org/10.1002/pol.1983.130210104
  25. B.K. Kim, S.Y. Park, and S.J. Park, "Morphological thermal and rheological properties of blends: polyethylene/nylon 6/(maleic anhydride-g-polyethylene) and (maleic anhydrideg- polyethylene)/nylon 6", Eur. Polym. J., 27, 349 (1991). https://doi.org/10.1016/0014-3057(91)90186-R
  26. W. Qiu, T. Endo, and T. Hirotsu, "Interfacial interaction, morphology, and tensile properties of a composite of highly crystalline cellulose and maleated polypropylene", J Appl Polym Sci, 102, 3830 (2006). https://doi.org/10.1002/app.24846
  27. J. Konar, A. K. Sen, and A. K. Bhowmick, "Characterization of grafted polyethylene by contact-angle hysteresis and ESCA studies", J. Appl. Polym. Sci., 48, 1579 (1993). https://doi.org/10.1002/app.1993.070480910
  28. J.J. Janimak and G.C. Stevens, "Comparative crystallisation and exploratory microstructure studies of novel polyethylenes with tailored molecular characteristics", Polymer, 41, 4233 (2000). https://doi.org/10.1016/S0032-3861(99)00632-1
  29. K. E. Russel, "Free radical graft polymerization and copolymerization at higher temperature", Prog. Polym. Sci., 27, 1007 (2008).
  30. A. Colbeaux, F. Fenouillot, L. David, J-F. Gerard, M. Taha, and H. Wautier, "Multifunctional covalent and ionic coupling agents of maleic anhydride modified polyethylene", J. Appl. Polym. Sci., 105, 2605 (2007). https://doi.org/10.1002/app.26380
  31. Y. Guldogan, S. Egri, Z.M.O. Rzaev, and E. Piskin, "Comparison of maleic anhydride grafting onto powder and granular polypropylene in the melt by reactive extrusion", J. Appl. Polym. Sci., 92, 3675 (2004). https://doi.org/10.1002/app.20304

피인용 문헌

  1. Preparation of EPDM/Polyamide12 Elastomers through Electron Beam Irradiation vol.37, pp.5, 2013, https://doi.org/10.7317/pk.2013.37.5.571
  2. The effect of polypropylene-graft-maleic anhydride on the morphology and dynamic mechanical properties of polypropylene/polystyrene blends vol.22, pp.2, 2015, https://doi.org/10.1007/s10965-014-0641-y
  3. Functionalization in solution of polypropylene with a maleinized hyperbranched polyol polyester: Structural, thermal, rheological, and mechanical properties pp.00218995, 2018, https://doi.org/10.1002/app.46932
  4. Isotactic polypropylene toughened with poly(acrylonitrile–butadiene–styrene): Compatibilizing role of maleic anhydride grafted polypropylene pp.1548-2634, 2019, https://doi.org/10.1002/pen.25062