• 제목/요약/키워드: Polynomials

검색결과 1,505건 처리시간 0.025초

PCA와 LDA를 결합한 데이터 전 처리와 다항식 기반 RBFNNs을 이용한 얼굴 인식 알고리즘 설계 (Design of Face Recognition algorithm Using PCA&LDA combined for Data Pre-Processing and Polynomial-based RBF Neural Networks)

  • 오성권;유성훈
    • 전기학회논문지
    • /
    • 제61권5호
    • /
    • pp.744-752
    • /
    • 2012
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as an one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problems. In data preprocessing part, Principal Component Analysis(PCA) which is generally used in face recognition, which is useful to express some classes using reduction, since it is effective to maintain the rate of recognition and to reduce the amount of data at the same time. However, because of there of the whole face image, it can not guarantee the detection rate about the change of viewpoint and whole image. Thus, to compensate for the defects, Linear Discriminant Analysis(LDA) is used to enhance the separation of different classes. In this paper, we combine the PCA&LDA algorithm and design the optimized pRBFNNs for recognition module. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as two kinds of polynomials such as constant, and linear. The coefficients of connection weight identified with back-propagation using gradient descent method. The output of the pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. The proposed pRBFNNs are applied to face image(ex Yale, AT&T) datasets and then demonstrated from the viewpoint of the output performance and recognition rate.

경쟁적 퍼지다항식 뉴런에 기초한 고급 자기구성 뉴럴네트워크 (Advanced Self-Organizing Neural Networks Based on Competitive Fuzzy Polynomial Neurons)

  • 박호성;박건준;이동윤;오성권
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권3호
    • /
    • pp.135-144
    • /
    • 2004
  • In this paper, we propose competitive fuzzy polynomial neurons-based advanced Self-Organizing Neural Networks(SONN) architecture for optimal model identification and discuss a comprehensive design methodology supporting its development. The proposed SONN dwells on the ideas of fuzzy rule-based computing and neural networks. And it consists of layers with activation nodes based on fuzzy inference rules and regression polynomial. Each activation node is presented as Fuzzy Polynomial Neuron(FPN) which includes either the simplified or regression polynomial fuzzy inference rules. As the form of the conclusion part of the rules, especially the regression polynomial uses several types of high-order polynomials such as linear, quadratic, and modified quadratic. As the premise part of the rules, both triangular and Gaussian-like membership (unction are studied and the number of the premise input variables used in the rules depends on that of the inputs of its node in each layer. We introduce two kinds of SONN architectures, that is, the basic and modified one with both the generic and the advanced type. Here the basic and modified architecture depend on the number of input variables and the order of polynomial in each layer. The number of the layers and the nodes in each layer of the SONN are not predetermined, unlike in the case of the popular multi-layer perceptron structure, but these are generated in a dynamic way. The superiority and effectiveness of the Proposed SONN architecture is demonstrated through two representative numerical examples.

고정과 자유경계조건의 조합을 고려한 직사각형 복합적층판의 3차원 진동해석 (Three-Dimensional Vibration Analysis of Rectangular Laminated Composite Plates with Combination of Clamped and Free Boundary Conditions)

  • 김주우
    • 한국강구조학회 논문집
    • /
    • 제18권2호
    • /
    • pp.161-171
    • /
    • 2006
  • 본 논문은 고정과 자유 경계의 다양한 조합을 갖는 직사각형 복합적층판의 고유진동에하고 있다. 본 연구에서는 수학적으로 완전한 특성직교다항식으로 표현되는 근사변위와 Ritz법을 이용하여 Lagrange 범함수의 정상값을 구하였다. 3차원 모델의 정확성이 무차원 진동수의 수렴도를 검토하여 이루어졌으며, 또한 기존 문헌상의 해석결과와의 비교를 통하여 진동수의 정확성을 검토하였다. 본 논문에서 제시된 3차원 진동수의 결과를 이용하여 복합적층판의 기하 및 재료에 관한 매개변수 즉, 형상비(${\mathcal{a/b}}$), 폭두께비(${\mathcal{a/h}}$), 재료의 직교이방성, 플라이 수(${\mathcal{N}}$), 섬유배향각(${\theta}$) 및 적층순서가 미치는 효과를 설명하였다.

EXISTENCE OF POLYNOMIAL INTEGRATING FACTORS

  • Stallworth, Daniel T.;Roush, Fred W.
    • Kyungpook Mathematical Journal
    • /
    • 제28권2호
    • /
    • pp.185-196
    • /
    • 1988
  • We study existence of polynomial integrating factors and solutions F(x, y)=c of first order nonlinear differential equations. We characterize the homogeneous case, and give algorithms for finding existence of and a basis for polynomial solutions of linear difference and differential equations and rational solutions or linear differential equations with polynomial coefficients. We relate singularities to nature of the solution. Solution of differential equations in closed form to some degree might be called more an art than a science: The investigator can try a number of methods and for a number of classes of equations these methods always work. In particular integrating factors are tricky to find. An analogous but simpler situation exists for integrating inclosed form, where for instance there exists a criterion for when an exponential integral can be found in closed form. In this paper we make a beginning in several directions on these problems, for 2 variable ordinary differential equations. The case of exact differentials reduces immediately to quadrature. The next step is perhaps that of a polynomial integrating factor, our main study. Here we are able to provide necessary conditions based on related homogeneous equations which probably suffice to decide existence in most cases. As part of our investigations we provide complete algorithms for existence of and finding a basis for polynomial solutions of linear differential and difference equations with polynomial coefficients, also rational solutions for such differential equations. Our goal would be a method for decidability of whether any differential equation Mdx+Mdy=0 with polynomial M, N has algebraic solutions(or an undecidability proof). We reduce the question of all solutions algebraic to singularities but have not yet found a definite procedure to find their type. We begin with general results on the set of all polynomial solutions and integrating factors. Consider a differential equation Mdx+Ndy where M, N are nonreal polynomials in x, y with no common factor. When does there exist an integrating factor u which is (i) polynomial (ii) rational? In case (i) the solution F(x, y)=c will be a polynomial. We assume all functions here are complex analytic polynomial in some open set.

  • PDF

Analysis of Stokes flows by Carrera unified formulation

  • Varello, Alberto;Pagani, Alfonso;Guarnera, Daniele;Carrera, Erasmo
    • Advances in aircraft and spacecraft science
    • /
    • 제5권3호
    • /
    • pp.363-383
    • /
    • 2018
  • One-dimensional (1D) models of incompressible flows, can be of interest for many applications in which fast resolution times are demanded, such as fluid-structure interaction of flows in compliant pipes and hemodynamics. This work proposes a higher-order 1D theory for the flow-field analysis of incompressible, laminar, and viscous fluids in rigid pipes. This methodology is developed in the domain of the Carrera Unified Formulation (CUF), which was first employed in structural mechanics. In the framework of 1D modelling, CUF allows to express the primary variables (i.e., velocity and pressure fields in the case of incompressible flows) as arbitrary expansions of the generalized unknowns, which are functions of the 1D computational domain coordinate. As a consequence, the governing equations can be expressed in terms of fundamental nuclei, which are invariant of the theory approximation order. Several numerical examples are considered for validating this novel methodology, including simple Poiseuille flows in circular pipes and more complex velocity/pressure profiles of Stokes fluids into non-conventional computational domains. The attention is mainly focused on the use of hierarchical McLaurin polynomials as well as piece-wise nonlocal Lagrange expansions of the generalized unknowns across the pipe section. The preliminary results show the great advantages in terms of computational costs of the proposed method. Furthermore, they provide enough confidence for future extensions to more complex fluid-dynamics problems and fluid-structure interaction analysis.

Investigation of the behavior of a crack between two half-planes of functionally graded materials by using the Schmidt method

  • Zhou, Zhen-Gong;Wang, Biao;Wu, Lin-Zhi
    • Structural Engineering and Mechanics
    • /
    • 제19권4호
    • /
    • pp.425-440
    • /
    • 2005
  • In this paper, the behavior of a crack between two half-planes of functionally graded materials subjected to arbitrary tractions is resolved using a somewhat different approach, named the Schmidt method. To make the analysis tractable, it is assumed that the Poisson's ratios of the mediums are constants and the shear modulus vary exponentially with coordinate parallel to the crack. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations in which the unknown variables are the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the jumps of the displacements across the crack surfaces are expanded in a series of Jacobi polynomials. This process is quite different from those adopted in previous works. Numerical examples are provided to show the effect of the crack length and the parameters describing the functionally graded materials upon the stress intensity factor of the crack. It can be shown that the results of the present paper are the same as ones of the same problem that was solved by the singular integral equation method. As a special case, when the material properties are not continuous through the crack line, an approximate solution of the interface crack problem is also given under the assumption that the effect of the crack surface interference very near the crack tips is negligible. It is found that the stress singularities of the present interface crack solution are the same as ones of the ordinary crack in homogenous materials.

ON ℤpp[u]/k>-CYCLIC CODES AND THEIR WEIGHT ENUMERATORS

  • Bhaintwal, Maheshanand;Biswas, Soumak
    • 대한수학회지
    • /
    • 제58권3호
    • /
    • pp.571-595
    • /
    • 2021
  • In this paper we study the algebraic structure of ℤpp[u]/k>-cyclic codes, where uk = 0 and p is a prime. A ℤpp[u]/k>-linear code of length (r + s) is an Rk-submodule of ℤrp × Rsk with respect to a suitable scalar multiplication, where Rk = ℤp[u]/k>. Such a code can also be viewed as an Rk-submodule of ℤp[x]/r - 1> × Rk[x]/s - 1>. A new Gray map has been defined on ℤp[u]/k>. We have considered two cases for studying the algebraic structure of ℤpp[u]/k>-cyclic codes, and determined the generator polynomials and minimal spanning sets of these codes in both the cases. In the first case, we have considered (r, p) = 1 and (s, p) ≠ 1, and in the second case we consider (r, p) = 1 and (s, p) = 1. We have established the MacWilliams identity for complete weight enumerators of ℤpp[u]/k>-linear codes. Examples have been given to construct ℤpp[u]/k>-cyclic codes, through which we get codes over ℤp using the Gray map. Some optimal p-ary codes have been obtained in this way. An example has also been given to illustrate the use of MacWilliams identity.

이슬람 예술 디자인에서 회전하는 알몬드와 오마르 하얌의 삼각형 (Ring of Four Almonds and the Omar Khayyam's Triangle in Islamic Art Design)

  • 박제남;박민구
    • 한국수학사학회지
    • /
    • 제32권4호
    • /
    • pp.159-173
    • /
    • 2019
  • In this paper, we examine the brief history of the ring of four almonds regarding Mesopotamian mathematics, and present reasons why the Omar Khayyam's triangle, a special right triangle in a ring of four almonds, was essential for artisans due to its unique pattern. We presume that the ring of four almonds originated from a point symmetry figure given two concentric squares used in the proto-Sumerian Jemdet Nasr period (approximately 3000 B.C.) and a square halfway between two given concentric squares used during the time of the Old Akkadian period (2340-2200 B.C.) and the Old Babylonian age (2000-1600 B.C.). Artisans tried to create a new intricate pattern as almonds and 6-pointed stars by subdividing right triangles in the pattern of the popular altered Old Akkadian square band at the time. Therefore, artisans needed the Omar Khayyam's triangle, whose hypotenuse equals the sum of the short side and the perpendicular to the hypotenuse. We presume that artisans asked mathematicians how to construct the Omar Khayyam's triangle at a meeting between artisans and mathematicians in Isfahan. The construction of Omar Khayyam's triangle requires solving an irreducible cubic polynomial. Omar Khayyam was the first to classify equations of integer polynomials of degree up to three and then proceeded to solve all types of cubic equations by means of intersections of conic sections. Omar Khayyam's triangle gave practical meaning to the type of cubic equation $x^3+bx=cx^2+a$. The work of Omar Khayyam was completed by Descartes in the 17th century.

Domain decomposition technique to simulate crack in nonlinear analysis of initially imperfect laminates

  • Ghannadpour, S. Amir M.;Karimi, Mona
    • Structural Engineering and Mechanics
    • /
    • 제68권5호
    • /
    • pp.603-619
    • /
    • 2018
  • In this research, an effective computational technique is carried out for nonlinear and post-buckling analyses of cracked imperfect composite plates. The laminated plates are assumed to be moderately thick so that the analysis can be carried out based on the first-order shear deformation theory. Geometric non-linearity is introduced in the way of von-Karman assumptions for the strain-displacement equations. The Ritz technique is applied using Legendre polynomials for the primary variable approximations. The crack is modeled by partitioning the entire domain of the plates into several sub-plates and therefore the plate decomposition technique is implemented in this research. The penalty technique is used for imposing the interface continuity between the sub-plates. Different out-of-plane essential boundary conditions such as clamp, simply support or free conditions will be assumed in this research by defining the relevant displacement functions. For in-plane boundary conditions, lateral expansions of the unloaded edges are completely free while the loaded edges are assumed to move straight but restricted to move laterally. With the formulation presented here, the plates can be subjected to biaxial compressive loads, therefore a sensitivity analysis is performed with respect to the applied load direction, along the parallel or perpendicular to the crack axis. The integrals of potential energy are numerically computed using Gauss-Lobatto quadrature formulas to get adequate accuracy. Then, the obtained non-linear system of equations is solved by the Newton-Raphson method. Finally, the results are presented to show the influence of crack length, various locations of crack, load direction, boundary conditions and different values of initial imperfection on nonlinear and post-buckling behavior of laminates.

무선통신용 LTCC 다층기판의 수동소자 라이브러리 구현 (Passive Device Library Implementation of LTCC Multilayer Board for Wireless Communications)

  • 조학래;구경헌
    • 한국항행학회논문지
    • /
    • 제23권2호
    • /
    • pp.172-178
    • /
    • 2019
  • 본 논문에서는 LTCC 다층기판으로 구현할 수동 소자를 수축공정과 무수축공정으로 구분하여 설계, 제작하고 분석하였다. 유전율 7 또는40의 두 종류 세라믹 소재를 사용하여 기본 형태의 수동소자를 다양하게 두 가지 공정으로 제작하여 특성을 비교하였다. 유전율40 기판을 사용할 때 수축공정은 X, Y 방향에서 17%, Z 방향에서 36%의 수축율을 보이는 것과 비교하여, 무수축공정은 X,Y 방향에서 변화하지 않고 Z 방향으로만 43% 수축하여 평면상에서 높은 치수 정밀도와 표면 평탄도를 얻을 수 있다. 측정 값으로 부터 매개 변수를 이용한 경험적 해석 식을 이용하여 제작한 LTCC 소자의 인덕턴스 및 커패시턴스를 추정하였으며 설계 라이브러리 형태로 구현하였다. 유전율과 제작 공정에 따라 인덕터의 권선수와 단위 면적에 따른 커패시턴스를 측정하여 권선수 및 단위면적에 따른 소자값을 예측할 수 있는 다항식을 제시하였다.