• Title/Summary/Keyword: Polynomial Function

Search Result 796, Processing Time 0.028 seconds

Software Cost Estimation Model Based on Use Case Points by using Regression Model (회귀분석을 이용한 UCP 기반 소프트웨어 개발 노력 추정 모델)

  • Park, Ju-Seok;Yang, Hea-Sool
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.8
    • /
    • pp.147-157
    • /
    • 2009
  • Recently, there has been continued research on UCP from the development effort estimation method to a software development project applying object oriented development methodology. Current research proposes a linear model estimating the developmenteffort by multiplying a constant to AUCP which applies technical and environmental factors. However, the fact that a non-linear regression model is more appropriate as the software size increases, the development period increases exponentially. In addition, in the UCP calculation process the occurrence of FP errors due to the application of TCF and EF, it is unrealistic to estimate the size with AUCP. This paper presents the issue of current research based on UCP without considering problems of the research, for example, TCF and EF and expresses the models (linear, logarithmic, polynomial, power and exponential type) estimating the development effort directly from UUCP. Consequently, the exponential model within non-linear models exhibit more accurate results than the current linear model. Therefore, after calculating the UUCP of the developing software system, using the proposed model to estimate the development effort, it is possible to estimate the direct cost required in development.

A Study On Bi-Criteria Shortest Path Model Development Using Genetic Algorithm (유전 알고리즘을 이용한 이중목적 최단경로 모형개발에 관한 연구)

  • 이승재;장인성;박민희
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.3
    • /
    • pp.77-86
    • /
    • 2000
  • The shortest path problem is one of the mathematical Programming models that can be conveniently solved through the use of networks. The common shortest Path Problem is to minimize a single objective function such as distance, time or cost between two specified nodes in a transportation network. The sing1e objective model is not sufficient to reflect any Practical Problem with multiple conflicting objectives in the real world applications. In this paper, we consider the shortest Path Problem under multiple objective environment. Wile the shortest path problem with single objective is solvable in Polynomial time, the shortest Path Problem with multiple objectives is NP-complete. A genetic a1gorithm approach is developed to deal with this Problem. The results of the experimental investigation of the effectiveness of the algorithm are also Presented.

  • PDF

Design of Optimized pRBFNNs-based Night Vision Face Recognition System Using PCA Algorithm (PCA알고리즘을 이용한 최적 pRBFNNs 기반 나이트비전 얼굴인식 시스템 설계)

  • Oh, Sung-Kwun;Jang, Byoung-Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.225-231
    • /
    • 2013
  • In this study, we propose the design of optimized pRBFNNs-based night vision face recognition system using PCA algorithm. It is difficalt to obtain images using CCD camera due to low brightness under surround condition without lighting. The quality of the images distorted by low illuminance is improved by using night vision camera and histogram equalization. Ada-Boost algorithm also is used for the detection of face image between face and non-face image area. The dimension of the obtained image data is reduced to low dimension using PCA method. Also we introduce the pRBFNNs as recognition module. The proposed pRBFNNs consists of three functional modules such as the condition part, the conclusion part, and the inference part. In the condition part of fuzzy rules, input space is partitioned by using Fuzzy C-Means clustering. In the conclusion part of rules, the connection weights of pRBFNNs is represented as three kinds of polynomials such as linear, quadratic, and modified quadratic. The essential design parameters of the networks are optimized by means of Differential Evolution.

Optimal Design of Fuzzy Relation-based Fuzzy Inference Systems with Information Granulation (정보 Granules에 의한 퍼지 관계 기반 퍼지 추론 시스템의 최적 설계)

  • Park Keon-Jun;Ahn Tae-Chon;Oh Sung-kwun;Kim Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.81-86
    • /
    • 2005
  • In this study, we introduce a new category of fuzzy inference systems based on information granulation to carry out the model identification of complex and nonlinear systems. Informally speaking, information granules are viewed as linked collections of objects (data, in particular) drawn together by the criteria of proximity, similarity, or functionality Granulation of information with the aid of Hard C-Means (HCM) clustering help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms(GAs) and the least square method (LSM). An aggregate objective function with a weighting factor is also used in order to achieve a balance between performance of the fuzzy model. The proposed model is evaluated with using a numerical example and is contrasted with the performance of conventional fuzzy models in the literature.

Hardware Design of Special-Purpose Arithmetic Unit for 3-Dimensional Graphics Processor (3차원 그래픽프로세서용 특수 목적 연산장치의 하드웨어 설계)

  • Choi, Byeong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.140-142
    • /
    • 2011
  • In this paper, special purpose arithmetic unit for mobile graphics accelerator is designed. The designed processor supports six operations, such as $1/{\chi}$, $\frac{1}{{\sqrt{x}}$, $log_2x$, $2^x$, $sin(x)$, $cos(x)$. The processor adopts 2nd-order polynomial minimax approximation scheme based on IEEE floating point data format to satisfy accuracy conditions and has 5-stage pipeline structure to meet high operational rates. The SFAU processor consists of 23,000 gates and its estimated operating frequency is about 400 Mhz at operating condition of 65nm CMOS technology. Because the processor can execute all operations with 5-stage pipeline scheme, it has about 400 MOPS(million operations per second) execution rate. Thus, it can be applicable to the 3D mobile graphics processors.

  • PDF

Concrete Aging-Dependent Deflection Analysis of Flexural Composite Members Using Sectional Analysis Method (단면해석법을 이용한 합성형 휨 부재의 재령 종속적 처짐해석)

  • Sung Won-Jin;Kim Jeong-Hyeon;Lee Yong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.155-162
    • /
    • 2004
  • An analytical method to predict the time dependent flexural behavior of composite girder is presented based on sectional analysis. The time dependent constitutive relation accounting for the early-age concrete properties including maturing of elastic modulus, creep and shrinkage is derived in an incremental format by the first order Taylor series expansion. The sectional analysis calculates the axial and curvature strains based on the force and moment equilibriums. The deflection curve of the girder approximated by the quadratic polynomial function is calculated by applying to the proper boundary conditions in the consecutive segments. Numerical applications are made for the 3-span double composite steel box girder which is a composite bridge girder filled with concrete at the bottom of the steel box in the negative moment region. The calculated results are compared with those by finite element analysis results. Close agreement is observed between the two approaches.

Calibration and Flight Test Results of Air Data Sensing System using Flush Pressure Ports (플러시 압력공을 사용한 대기자료 측정장치의 교정 및 비행시험 결과)

  • Lee, Chang-Ho;Park, Young-Min;Chang, Byeong-Hee;Lee, Yung-Gyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.7
    • /
    • pp.531-538
    • /
    • 2017
  • A flush air data sensing system, which can predict flight speed, angle of attack, and angle of sideslip of the aircraft is designed and manufactured for a small UAV. Two kinds of flush pressure ports, four ports and five ports, are tapped at the same section of fuselage nose-cone. Calibration pressure data at flush ports are obtained through computations for the total aircraft by using Fluent code. Angle of attack, angle of sideslip, total pressure, and static pressure are represented with 4th-order polynomial function and calibration coefficient matrix is obtained using least square method with calibration pressure data. Flight test showed that flight speed, angle of attack, and sideslip angle predicted by four flush ports and five flush ports compared well with those by five-hole probe installed for data comparison. Especially four flush ports revealed nearly same results as those by five flush ports.

Mathematical Modeling & Empirical Analysis for Estimation of Fuel Consumption using OBD-II Data in Vehicle (차량 OBD-II 데이터를 이용한 연료 소모량 추정의 수식적 모델링 및 실증 분석)

  • Lee, Min-Goo;Park, Yong-Guk;Jung, Kyung-Kwon;Yoo, Jun-Jae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.2
    • /
    • pp.9-14
    • /
    • 2011
  • This Paper proposed the prediction method of fuel consumption from vehicle informations through OBD-II Interface. We assumed RPM, TPS had a relationship with fuel consumption. We got the output as fuel-consumption from a vehicle RPM, TPS as input by using polynomial equation. We had modelling as quadric function with OBD-II data and fuel consumption data supported by automotive company in real. In order to verify the effectiveness of proposed method, 5 km real road-test was performed. The results showed that the proposed method can estimate precisely the fuel consumption from vehicle multi-data.

A Selection-Deletion of Prime Implicants Algorithm Based on Frequency for Circuit Minimization (빈도수 기반 주 내포 항 선택과 삭제 알고리즘을 적용한 회로 최소화)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.4
    • /
    • pp.95-102
    • /
    • 2015
  • This paper proposes a simple algorithm for circuit minimization. There are currently two effective heuristics for circuit minimization, namely manual Karnaugh maps and computable Quine-McCluskey algorithm. The latter, however, has a major defect: the runtime and memory required grow $3^n/n$ times for every increase in the number of variables n. The proposed algorithm, however, extracts the prime implicants (PI) that cover minterms of a given Boolean function by deriving an implicants table based on frequency. From a set of the extracted prime implicants, the algorithm then eliminates redundant PIs again based on frequency. The proposed algorithm is therefore capable of minimizing circuits polynomial time when faced with an increase in n. When applied to various 3-variable and 4-variable cases, it has proved to swiftly and accurately obtain the optimal solutions.

A Low Power QPP Interleaver Address Generator Design Using The Periodicity of QPP (QPP 주기성을 이용한 저전력 QPP 인터리버 주소발생기 설계)

  • Lee, Won-Ho;Rim, Chong-Suck
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.12
    • /
    • pp.83-88
    • /
    • 2008
  • The QPP interleaver has been gaining attention since it provides contention-free interleaving functionality for high speed parallel turbo decoders. In this paper we first show that the quadratic term $f_2x^2%K$ of $f(x)=(f_1x+f_2x^2)%K$, the address generating function, is periodic. We then introduce a low-power address generator which utilizes this periodic characteristic. This generator follows the conventional method to generate the interleaving addresses and also to save the quadratic term values during the first half of the first period. The saved values are then reused for generating further interleaved addresses, resulting in reduced number of logical operations. Power consumption is reduced by 27.38% in the design with fixed-K and 5.54% in the design with unfixed-K on average for various values of K, when compared with the traditional designs.