DOI QR코드

DOI QR Code

Calibration and Flight Test Results of Air Data Sensing System using Flush Pressure Ports

플러시 압력공을 사용한 대기자료 측정장치의 교정 및 비행시험 결과

  • Lee, Chang-Ho (Aerodynamics Research Team, Korea Aerospace Research Institute) ;
  • Park, Young-Min (Aerodynamics Research Team, Korea Aerospace Research Institute) ;
  • Chang, Byeong-Hee (Aerodynamics Research Team, Korea Aerospace Research Institute) ;
  • Lee, Yung-Gyo (Aerodynamics Research Team, Korea Aerospace Research Institute)
  • Received : 2017.05.25
  • Accepted : 2017.06.28
  • Published : 2017.07.01

Abstract

A flush air data sensing system, which can predict flight speed, angle of attack, and angle of sideslip of the aircraft is designed and manufactured for a small UAV. Two kinds of flush pressure ports, four ports and five ports, are tapped at the same section of fuselage nose-cone. Calibration pressure data at flush ports are obtained through computations for the total aircraft by using Fluent code. Angle of attack, angle of sideslip, total pressure, and static pressure are represented with 4th-order polynomial function and calibration coefficient matrix is obtained using least square method with calibration pressure data. Flight test showed that flight speed, angle of attack, and sideslip angle predicted by four flush ports and five flush ports compared well with those by five-hole probe installed for data comparison. Especially four flush ports revealed nearly same results as those by five flush ports.

비행속력 및 받음각과 옆미끄럼각을 측정할 수 있는 플러시 대기자료측정장치를 소형의 무인항공기를 대상으로 설계/제작하였다. 동체 노즈콘 표면에 4개 압력 측정점과 5개 압력 측정점의 2가지 타입으로 플러시 압력공들을 만들었다. 플러시 압력공의 교정 압력 데이터는 전기체를 전산유체해석 코드로 계산하여 구축하였다. 교정압력 데이터로부터 받음각, 옆미끄럼각, 전압계수, 정압계수는 4차 다항식으로 표현하고, 최소자승법으로 교정계수 행렬을 구하였다. 비행시험 결과 4개 플러시 압력공 및 5개 플러시 압력공을 이용하여 예측된 비행속력, 받음각과 옆미끄럼각은 비교를 위해 장착한 5-압력공 프로브로 예측된 것과 잘 일치하였으며, 특히 4개의 압력공으로 5개 압력공과 거의 동일한 결과를 얻을 수 있었다.

Keywords

References

  1. Lee, C., Park, Y., and Chang, B., "Calibration of 5-Hole Pressure Probe Utilizing Neural Network Method," Proceeding of the 2016 KSAS Fall Conference, 2016.
  2. Lee, C., Park, Y., and Chang, B., "Flight Testing of Multi-Function Air Data System Applied to a Small UAV," Proceeding of the 2017 KSAS Spring Conference, 2017.
  3. Langelaan, J. W., Alley, N., and Neidhoefer, J., "Wind Field Estimation for Small Unmanned Aerial Vehicles," AIAA Guidance, Navigation, and Control Conference, Toronto, Canada, 2010.
  4. Cho, A., Kim, J., Lee, S., and Kee, C., "Wind Estimation and Airspeed Calibration using a UAV with a Single-Antenna GPS Receiver and Pitot Tube," IEEE Transactions on Aerospace and Electronic Systems, Vol. 47, No. 1, 2011, pp. 109-117. https://doi.org/10.1109/TAES.2011.5705663
  5. Rhudy, M., Larrabee, T., Chao, H., Gu, Y., and Napolitano, M., "UAV Attitude, Heading, and Wind Estimation using GPS/INS and an Air Data System," AIAA Guidance, Navigation, and Control Conference, 2013.
  6. Crowther, W. J. and Lamont, P. J., "A Neural Network Approach to the Calibration of a Flush Air Data System," Aeronautical Jouranl, Vol. 105, 2001, pp. 85-95. https://doi.org/10.1017/S0001924000011532
  7. Whitmore, S. A., Moes, T. R., and Larson, T. J., "Preliminary Results froma Subsonic High Angle of Attack Flush Airdata Sensing System: Design, Calibration, and Flight Test Evaluation," NASA TM 101713, 1990.
  8. Lee, C., Park, Y., and Chang, B., "Neural Network based Flush Air Data Sensing for Small UAV," Proceeding of the 2016 Asia-Pacific International Symposium on Aerospace Technology , 2016.
  9. Gallington, R. W., "Measurement of Very Large Flow Angles with Non-Nulling Seven-Hole Probes," USAFA-TR-80-17, 1980.
  10. Sung, B. Z., and Chang, B. H., "A Simple Calibration Method for the 5-hole Yawed Probe using the Method of Least Squares," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 16, No. 2, 1988, pp. 20-28.
  11. Shepherd, I., "A Four Hole Pressure Probe for Fluid Flow Measurements in Three Dimensions," Journal of Fluids Eng., Vol. 103, 1981, pp. 590-594. https://doi.org/10.1115/1.3241774