• Title/Summary/Keyword: Polymeric drug

Search Result 144, Processing Time 0.026 seconds

Physico-chemical Behavior of Polymeric Hydrogels

  • Soh, Dae-Wha;Mun, G.A.;Nam, Irina;Nurkeeva, Z.S.;Shaikhutdinov, E.M.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.592-595
    • /
    • 2002
  • New polymeric hydrogels based on vinyl ethers have been synthesized by the ${\gamma}$-initiated polymerization method. Their physical chemistry and physical mechanical properities have been studied. It has been shown that structure and swelling behavior of the hydrogels can be regulated by the changing of synthesis conditions nature of monomers. Novel stimuli-sensitive polymers have been synthesized by the varying of macrochains hydrophilic-hydrophobic balance. The some biomedical aspects of application of hydrogels in capacity of drain aging polymeric materials in ophthalmology surgery, implants in plastic surgery as well as drug delivery systems have been investigated.

  • PDF

The Effect of Synthetic Polymer Membranes on the Skin Permeation of Anti-AIDS Drugs (항에이즈 약물의 경피흡수에 미치는 합성고분자 멤브레인의 영향)

  • Lee, Kyung-Jin;Kim, Dae-Duk;Chien, Yie W.
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.1
    • /
    • pp.1-5
    • /
    • 1998
  • The effect of synthetic polymer membranes on the permeation rate of dideoxynucleoside-type anti-HIV drugs through hairless rat skin was studied using ethylene/vinyl acetate copolymer (EVA) and ethylene/methyl acrylate copolymer (EMA) membranes fabricated by solvent casting method. In vitro skin permeation kinetics study of DDC (2',3'-dideoxythymidine), DDI (2',3'-dideoxyinosine) and AZT (3'-azido-3'-deoxythymidine) across the (membrane/skin) composite was conducted for 24 hours at $37^{\circ}C$ using the Valia-Chien skin permeation system. The results showed that skin permeation rate of each drug across the (skin/membrane) composite was mainly dependent on the property of the membrane. Proper selection of the polymeric membrane which resembles hydrophilicity/lipophilicity of the delivering drug was important in controlling the skin permeation rate.

  • PDF

Tissue Distribution of Novel Polymeric Micellar Paclitaxel in Mice

  • Kim, Hye-Jin;Kang, Min-Kyung;Kim, Kil-Soo
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.413.3-414
    • /
    • 2002
  • Paclitaxel is a diterpenoid isolated from Taxus brevifolia and is an active anticancer drug for the treatment of ovarian cancer, breast cancer and Kaposi's sarcoma. Due to its low solubility in water, it is dissolved in Cremophor EL(polyethoxylated castor oil) and ethanol, which cause serious side effects including hypersensitivity. BLK460 was developed as a novel polymeric micellar paclitaxel formulation containing Aceporol460 as solubilizer (omitted)

  • PDF

Functional Polymers for Drug Delivery Systems in Nanomedicines

  • Lee, Eun-Seong;Kim, Ji-Hoon;Yun, Jeong-Min;Lee, Kyung-Soo;Park, Ga-Young;Lee, Beom-Jin;Oh, Kyung-Taek
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.spc
    • /
    • pp.45-61
    • /
    • 2010
  • Polymeric based nanomedicines have been developed for diagnosing, treating, and preventing diseases in human body. The nanosized drug delivery systems having various structures such as micelles, nanogels, drug-conjugates, and polyplex were investigated for a great goal in pharmaceutics: increasing therapeutic efficacy for diseases and decreasing drug toxicity for normal tissues. The functional polymers used for constituting these drug delivery systems should have several favorable properties such as stimuli-responsibility and biodegrdability for controlled drug release, and solublization capacity for programmed drug encapsulation. This review discusses recent developments and trends of functional polymers (e.g., pH-sensitive polymers, biodegradable polymers, and cationic polymers) used for nanosized drug carriers.

Assessment of Discoidal Polymeric Nanoconstructs as a Drug Carrier (약물 운반체로서의 폴리머 디스크 나노 입자에 대한 평가)

  • BAE, J.Y.;OH, E.S.;AHN, H.J.;KEY, Jaehong
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • Chemotherapy, radiation therapy, and surgery are major methods to treat cancer. However, current cancer treatments report severe side effects and high recurrences. Recent studies about engineering nanoparticles as a drug carrier suggest possibilities in terms of specific targeting and spatiotemporal release of drugs. While many nanoparticles demonstrate lower toxicity and better targeting results than free drugs, they still need to improve their performance dramatically in terms of targeting accuracy, immune responses, and non-specific accumulation at organs. One possible way to overcome the challenges is to make precisely controlled nanoparticles with respect to size, shape, surface properties, and mechanical stiffness. Here, we demonstrate $500{\times}200nm$ discoidal polymeric nanoconstructs (DPNs) as a drug delivery carrier. DPNs were prepared by using a top-down fabrication method that we previously reported to control shape as well as size. Moreover, DPNs have multiple payloads, poly lactic-co-glycolic acid (PLGA), polyethylene glycol (PEG), lipid-Rhodamine B dye (RhB) and Salinomycin. In this study, we demonstrated a potential of DPNs as a drug carrier to treat cancer.

Preparation of Polymeric Self-Assembly and Its Application to Biomaterials

  • Cho, Chong-Su;Park, In-Kyu;Nah, Jae-Woon;Toshihiro Akaike
    • Macromolecular Research
    • /
    • v.11 no.1
    • /
    • pp.2-8
    • /
    • 2003
  • The self-assembly of polymers can lead to supramolecular systems and is related to the their functions of material and life sciences. In this article, self-assembly of Langmuir-Blodgett (LB) films, polymer micelles, and polymeric nanoparticles, and their biomedical applications are described. LB surfaces with a well-ordered and layered structure adhered more cells including platelet, hepatocyte, and fibroblast than the cast surfaces with microphase-separated domains. Extensive morphologic changes were observed in LB surface-adhered cells compared to the cast films. Amphiphilic block copolymers, consisting of poly(${\gamma}$-benzyl L-glutamate) (PBLG) as the hydrophobic part and poly(ethylene oxide) (PEO) [or poly(N-isopropylacrylamide) (PNIPAAm)] as the hydrophilic one, can self-assemble in water to form nanoparticles presumed to be composed of the hydrophilic shell and hydrophobic core. The release characteristics of hydrophobic drugs from these polymeric nanoparticles were dependent on the drug loading contents and chain length of the hydrophobic part of the copolymers. Achiral hydrophobic merocyanine dyes (MDs) were self-assembled in copolymeric nanoparticles, which provided a chiral microenvironment as red-shifted aggregates, and the circular dichroism (CD) of MD was induced in the self-assembled copolymeric nanoparticles.

Biostable Poly(ethylene oxide)-b-poly(methacrylic acid) Micelles forpH-triggered Release of Doxorubicin

  • Choi, Young-Keun;Lee, Dong-Won;Yong, Chul-Soon;Choi, Han-Gon;Bronich, Tatiana K.;Kim, Jong-Oh
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.2
    • /
    • pp.111-115
    • /
    • 2011
  • pH-sensitive cross-linked polymeric micelles were synthesized by using block ionomer complexes of poly(ethylene oxide)-b-poly(methacrylic acid) (PEO-b-PMA) with calcium ions as micellar templates. An anticancer drug, doxorubicin (DOX) was conjugated on the cross-linked ionic cores of micelles via acid-labile hydrozone bonds. The resulting DOX-conjugated, pH-sensitive micelles are stable at physiological conditions, whereas the release of DOX was significantly increased at the acidic pH. Such micelles were internalized to lysosomes, and acidic pH in lysosomes triggers the release of DOX upon internalization in MCF-7 breast cancer cells. The released DOX entered the cell nucleus and eventually killed cancer cells. Therefore, these data demonstrate that the pH-sensitive micelles could be a promising nanocarrier for delivery of anticancer drug, DOX.

Potential Antimicrobial Applications of Chitosan Nanoparticles (ChNP)

  • Rozman, Nur Amiera Syuhada;Yenn, Tong Woei;Ring, Leong Chean;Nee, Tan Wen;Hasanolbasori, Muhammad Ariff;Abdullah, Siti Zubaidah
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1009-1013
    • /
    • 2019
  • Polymeric nanoparticles are widely used for drug delivery due to their biodegradability property. Among the wide array of polymers, chitosan has received growing interest among researchers. It was widely used as a vehicle in polymeric nanoparticles for drug targeting. This review explored the current research on the antimicrobial activity of chitosan nanoparticles (ChNP) and the impact on the clinical applications. The antimicrobial activities of ChNP were widely reported against bacteria, fungi, yeasts and algae, in both in vivo and in vitro studies. For pharmaceutical applications, ChNP were used as antimicrobial coating for promoting wound healing, preventing infections and combating the rise of infectious disease. Besides, ChNP also exhibited significant inhibitory activities on foodborne microorganisms, particularly on fruits and vegetables. It is noteworthy that ChNP can be also applied to deliver antimicrobial drugs, which further enhance the efficiency and stability of the antimicrobial agent. The present review addresses the potential antimicrobial applications of ChNP from these few aspects.

Preparation and Evaluation of Chrysin Encapsulated in PLGA-PEG Nanoparticles in the T47-D Breast Cancer Cell Line

  • Mohammadinejad, Sina;Akbarzadeh, Abolfazl;Rahmati-Yamchi, Mohammad;Hatam, Saeid;Kachalaki, Saeed;Zohreh, Sanaat;Zarghami, Nosratollah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3753-3758
    • /
    • 2015
  • Background: Polymeric nanoparticles are attractive materials that have been widely used in medicine for drug delivery, with therapeutic applications. In our study, polymeric nanoparticles and the anticancer drug, chrysin, were encapsulated into poly (D, L-lactic-co-glycolic acid) poly (ethylene glycol) (PLGA-PEG) nanoparticles for local treatment. Materials and Methods: PLGA: PEG triblock copolymers were synthesized by ring-opening polymerization of D, L-lactide and glycolide as an initiator. The bulk properties of these copolymers were characterized using 1H nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy. In addition, the resulting particles were characterized by scanning electron microscopy. Results: The chrysin encapsulation efficiency achieved for polymeric nanoparticles was 70% control of release kinetics. The cytotoxicity of different concentration of pure chrysin and chrysin loaded in PLGA-PEG ($5-640{\mu}M$) on T47-D breast cancer cell line was analyzed by MTT-assay. Conclusions: There is potential for use of these nanoparticles for biomedical applications. Future work should include in vivo investigation of the targeting capability and effectiveness of these nanoparticles in the treatment of breast cancer.

Development of New Quinolone Antibacterials with Dextran-bond (Dextran에 결합된 새로운 Quinolone계 항균제의 개발)

  • Kim, Sun-Il;Na, Jae-Woon
    • Applied Chemistry for Engineering
    • /
    • v.5 no.3
    • /
    • pp.501-508
    • /
    • 1994
  • 1-Ethyl-6-fluoro-1, 4-dihydro-4-oxo-7-(1-piperazinyl)quinolinea-3-car-boxylic acid-dextran was synthesized by the reaction of 1-ethyl-6-fluoro-1, 4-dihydro-4-oxo-7-(1-piperazinyl )quinoline-3-acryloyl chloride with dextran. Polymeric drug was tested for antimicrobial activity in vitro against ten species of microorganisms. Polymeric drug revealed good antibacterial activity against Bacillus subtillis ATCC 6633, Staphyloccus aureus ATCC 25923, Mycrobactertum phlei IFO 3158, Salmonella typhimurium KCTC 1925, Escherichia coli KCTC 1039, Escherichia coli ESS, Klebsiella puemouiae KCTC 1560 and Pseudomonas aeruginosa IFO 13130. Polymeric drug have no antimicrobial against Candida albicans ATCC 10231, but moderately active Micrococcus luteus ATCC 9341.

  • PDF