DOI QR코드

DOI QR Code

Biostable Poly(ethylene oxide)-b-poly(methacrylic acid) Micelles forpH-triggered Release of Doxorubicin

  • Choi, Young-Keun (College of Pharmacy, Yeungnam University) ;
  • Lee, Dong-Won (College of Pharmacy, Yeungnam University) ;
  • Yong, Chul-Soon (College of Pharmacy, Yeungnam University) ;
  • Choi, Han-Gon (College of Pharmacy, Hanyang University) ;
  • Bronich, Tatiana K. (Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center) ;
  • Kim, Jong-Oh (College of Pharmacy, Yeungnam University)
  • Received : 2011.03.21
  • Accepted : 2011.04.11
  • Published : 2011.04.20

Abstract

pH-sensitive cross-linked polymeric micelles were synthesized by using block ionomer complexes of poly(ethylene oxide)-b-poly(methacrylic acid) (PEO-b-PMA) with calcium ions as micellar templates. An anticancer drug, doxorubicin (DOX) was conjugated on the cross-linked ionic cores of micelles via acid-labile hydrozone bonds. The resulting DOX-conjugated, pH-sensitive micelles are stable at physiological conditions, whereas the release of DOX was significantly increased at the acidic pH. Such micelles were internalized to lysosomes, and acidic pH in lysosomes triggers the release of DOX upon internalization in MCF-7 breast cancer cells. The released DOX entered the cell nucleus and eventually killed cancer cells. Therefore, these data demonstrate that the pH-sensitive micelles could be a promising nanocarrier for delivery of anticancer drug, DOX.

Keywords

References

  1. Alakhov, V.Y., Klinkski, E., Li, S., Pietrzynski, G., Venne, A., Batrakova, E., Bronich, T.K., Kabanov, A.V., 1999. Block copolymer-based formulation of doxorubicin. From cell screen to clinical trials, Colloids Surf B:Biointerfaces, 16, 113-134. https://doi.org/10.1016/S0927-7765(99)00064-8
  2. Allen, C., Maysinger, D., Eisenberg, A., 1999. Nano-engineering block copolymer aggregates for drug delivery, Colloids Surf B:Biointerfaces, 16, 3-27. https://doi.org/10.1016/S0927-7765(99)00058-2
  3. Bontha, S., Kabanov, A.V., Bronich, T.K., 2006. Polymer micelles with cross-linked ionic cores for delivery of anticancer drugs, J. Control. Release., 114, 163-174. https://doi.org/10.1016/j.jconrel.2006.06.015
  4. Bronich, T.K., Keifer, P.A., Shlyakhtenko, L.S., Kabanov, A.V., 2005. Polymer micelle with cross-linked ionic core, J. Am. Chem. Soc., 127, 8236-8237. https://doi.org/10.1021/ja043042m
  5. Cohy, J.-F., 2005. Block Copolymer Micelles, Adv. Polym. Sci., 190, 65-136. https://doi.org/10.1007/12_048
  6. Croy, S.R., Kwon, G.S., 2006. Polymeric micelles for drug delivery, Curr. Pharm. Des., 12, 4669-4684. https://doi.org/10.2174/138161206779026245
  7. Davis, M.E., Chen, Z.G., Shin, D.M., 2008. Nanoparticle therapeutics: an emerging treatment modality for cancer, Nat. Rev. Drug. Discov., 7, 771-782. https://doi.org/10.1038/nrd2614
  8. Duncan, R., 2003. The dawning era of polymer therapeutics, Nat. Rev. Drug. Discov., 2, 347-60. https://doi.org/10.1038/nrd1088
  9. Gerweck, L.E., Vijayappa, S., Kozin, S., 2006. Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics, Mol. Cancer. Ther., 5, 1275-1279.
  10. Kabanov, A.V., Vinogradov, S.V., 2009. Nanogels as Pharmaceutical Carriers: Finite Networks of Infinite Capabilities, Angew. Chem. Int. Ed. Engl., 48, 5418-5429. https://doi.org/10.1002/anie.200900441
  11. Kim, J.O., Kabanov, A.V., Bronich, T.K., 2009. Polymer micelles with cross-linked polyanion core for delivery of a cationic drug doxorubicin, J. Control. Release., 138, 197-204. https://doi.org/10.1016/j.jconrel.2009.04.019
  12. Kim, J.O., Sahay, G., Kabanov, A.V., Bronich, T.K., 2010. Polymeric micelles with ionic cores containing biodegradable cross-links for delivery of chemotherapeutic agents, Biomacromolecules, 11, 919-926. https://doi.org/10.1021/bm9013364
  13. Lavasanifara, A., Samuela, J., Kwon, G.S., 2002. Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery, Adv. Drug. Delivery Rev., 54, 169-190. https://doi.org/10.1016/S0169-409X(02)00015-7
  14. Maeda, H., 2001. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul., 41, 189-207. https://doi.org/10.1016/S0065-2571(00)00013-3
  15. Riess, G., 2003. Micellization of block copolymers, Prog. Polym. Sci., 28, 1107-1170. https://doi.org/10.1016/S0079-6700(03)00015-7
  16. Rosler, A., Vandermeulen, G.W.M., Klok, H.A., 2001. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers, Adv. Drug. Delivery Rev., 53, 95-108. https://doi.org/10.1016/S0169-409X(01)00222-8
  17. Sahay, G., Kim, J.O., Kabanov, A.V., Bronich, T.K., 2010. The exploitation of differential endocytic pathways in normal and tumor cells in the selective targeting of nanoparticulate chemotherapeutic agents, Biomaterials, 31, 923-933. https://doi.org/10.1016/j.biomaterials.2009.09.101
  18. Yokoyama, M., Fukushima, S., Uehara, R., Okamoto, K., Kataoka, K., Sakurai, Y., Okano, T., 1999. Selective delivery of adriamycin to a solid tumor using a polymeric micelle carrier system, J. Drug Target, 7, 171-186. https://doi.org/10.3109/10611869909085500

Cited by

  1. Hyaluronic Acid Derivative-Based Self-Assembled Nanoparticles for the Treatment of Melanoma vol.29, pp.12, 2012, https://doi.org/10.1007/s11095-012-0839-9