References
- Alakhov, V.Y., Klinkski, E., Li, S., Pietrzynski, G., Venne, A., Batrakova, E., Bronich, T.K., Kabanov, A.V., 1999. Block copolymer-based formulation of doxorubicin. From cell screen to clinical trials, Colloids Surf B:Biointerfaces, 16, 113-134. https://doi.org/10.1016/S0927-7765(99)00064-8
- Allen, C., Maysinger, D., Eisenberg, A., 1999. Nano-engineering block copolymer aggregates for drug delivery, Colloids Surf B:Biointerfaces, 16, 3-27. https://doi.org/10.1016/S0927-7765(99)00058-2
- Bontha, S., Kabanov, A.V., Bronich, T.K., 2006. Polymer micelles with cross-linked ionic cores for delivery of anticancer drugs, J. Control. Release., 114, 163-174. https://doi.org/10.1016/j.jconrel.2006.06.015
- Bronich, T.K., Keifer, P.A., Shlyakhtenko, L.S., Kabanov, A.V., 2005. Polymer micelle with cross-linked ionic core, J. Am. Chem. Soc., 127, 8236-8237. https://doi.org/10.1021/ja043042m
- Cohy, J.-F., 2005. Block Copolymer Micelles, Adv. Polym. Sci., 190, 65-136. https://doi.org/10.1007/12_048
- Croy, S.R., Kwon, G.S., 2006. Polymeric micelles for drug delivery,Curr. Pharm. Des., 12, 4669-4684. https://doi.org/10.2174/138161206779026245
- Davis, M.E., Chen, Z.G., Shin, D.M., 2008. Nanoparticle therapeutics: an emerging treatment modality for cancer, Nat. Rev. Drug. Discov., 7, 771-782. https://doi.org/10.1038/nrd2614
- Duncan, R., 2003. The dawning era of polymer therapeutics, Nat. Rev. Drug. Discov., 2, 347-60. https://doi.org/10.1038/nrd1088
- Gerweck, L.E., Vijayappa, S., Kozin, S., 2006. Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics, Mol. Cancer. Ther., 5, 1275-1279.
- Kabanov, A.V., Vinogradov, S.V., 2009. Nanogels as Pharmaceutical Carriers: Finite Networks of Infinite Capabilities, Angew. Chem. Int. Ed. Engl., 48, 5418-5429. https://doi.org/10.1002/anie.200900441
- Kim, J.O., Kabanov, A.V., Bronich, T.K., 2009. Polymer micelles with cross-linked polyanion core for delivery of a cationic drug doxorubicin, J. Control. Release., 138, 197-204. https://doi.org/10.1016/j.jconrel.2009.04.019
- Kim, J.O., Sahay, G., Kabanov, A.V., Bronich, T.K., 2010. Polymeric micelles with ionic cores containing biodegradable cross-links for delivery of chemotherapeutic agents, Biomacromolecules,11, 919-926. https://doi.org/10.1021/bm9013364
- Lavasanifara, A., Samuela, J., Kwon, G.S., 2002. Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery, Adv. Drug. Delivery Rev., 54, 169-190. https://doi.org/10.1016/S0169-409X(02)00015-7
- Maeda, H., 2001. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul., 41, 189-207. https://doi.org/10.1016/S0065-2571(00)00013-3
- Riess, G., 2003. Micellization of block copolymers, Prog. Polym. Sci., 28, 1107-1170. https://doi.org/10.1016/S0079-6700(03)00015-7
- Rosler, A., Vandermeulen, G.W.M., Klok, H.A., 2001. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers, Adv. Drug. Delivery Rev., 53, 95-108. https://doi.org/10.1016/S0169-409X(01)00222-8
- Sahay, G., Kim, J.O., Kabanov, A.V., Bronich, T.K., 2010. The exploitation of differential endocytic pathways in normal and tumor cells in the selective targeting of nanoparticulate chemotherapeutic agents, Biomaterials, 31, 923-933. https://doi.org/10.1016/j.biomaterials.2009.09.101
- Yokoyama, M., Fukushima, S., Uehara, R., Okamoto, K., Kataoka, K., Sakurai, Y., Okano, T., 1999. Selective delivery of adriamycin to a solid tumor using a polymeric micelle carrier system,J. Drug Target, 7, 171-186. https://doi.org/10.3109/10611869909085500
Cited by
- Hyaluronic Acid Derivative-Based Self-Assembled Nanoparticles for the Treatment of Melanoma vol.29, pp.12, 2012, https://doi.org/10.1007/s11095-012-0839-9