DOI QR코드

DOI QR Code

Functional Polymers for Drug Delivery Systems in Nanomedicines

  • Lee, Eun-Seong (Division of Biotechnology, The Catholic University of Korea) ;
  • Kim, Ji-Hoon (College of Pharmacy, Chung-Ang University) ;
  • Yun, Jeong-Min (College of Pharmacy, Chung-Ang University) ;
  • Lee, Kyung-Soo (College of Pharmacy, Chung-Ang University) ;
  • Park, Ga-Young (College of Pharmacy, Chung-Ang University) ;
  • Lee, Beom-Jin (Bioavailability Control Laboratory, College of Pharmacy, Kangwon National University) ;
  • Oh, Kyung-Taek (College of Pharmacy, Chung-Ang University)
  • Received : 2010.09.02
  • Accepted : 2010.10.05
  • Published : 2010.12.20

Abstract

Polymeric based nanomedicines have been developed for diagnosing, treating, and preventing diseases in human body. The nanosized drug delivery systems having various structures such as micelles, nanogels, drug-conjugates, and polyplex were investigated for a great goal in pharmaceutics: increasing therapeutic efficacy for diseases and decreasing drug toxicity for normal tissues. The functional polymers used for constituting these drug delivery systems should have several favorable properties such as stimuli-responsibility and biodegrdability for controlled drug release, and solublization capacity for programmed drug encapsulation. This review discusses recent developments and trends of functional polymers (e.g., pH-sensitive polymers, biodegradable polymers, and cationic polymers) used for nanosized drug carriers.

Keywords

References

  1. Aillon, K.L., Xie, Y., El-Gendy, N., Berkland, C.J. and Forrest, M.L., 2009. Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev 61(6), 457-66. https://doi.org/10.1016/j.addr.2009.03.010
  2. Allen, C., Maysinger, D. and Eisenberg, A., 1999. Nano-engineering block copolymer aggregates for drug delivery. Colloids and Surfaces B: Biointerfaces 16(1-4), 3-27. https://doi.org/10.1016/S0927-7765(99)00058-2
  3. Anderson, J.M., Spilizewski, K.L. and Hiltner, A., 1985. Poly-a-amino acids as biomedical polymers. In: Biocompatibility of Tissue Analogs.
  4. D. F. Williams. CRC Press, Boca Raton
  5. Avgoustakis, K., Beletsi, A., Panagi, Z., Klepetsanis, P., Livaniou, E., Evangelatos, G. and Ithakissios, D.S., 2003. Effect of copolymer composition on the physicochemical characteristics, in vitro stability, and biodistribution of PLGA-mPEG nanoparticles. International Journal of Pharmaceutics 259(1-2), 115-127. https://doi.org/10.1016/S0378-5173(03)00224-2
  6. Bader, H., Ringsdorf, H. and Schmidt, B., 1984. Watersoluble polymers in medicine. Die Angewandte Makromolekulare Chemie 123(1), 457-485. https://doi.org/10.1002/apmc.1984.051230121
  7. Bae, Y., Fukushima, S., Harada, A. and Kataoka, K., 2003. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew Chem Int Ed Engl 42(38), 4640-3. https://doi.org/10.1002/anie.200250653
  8. Bae, Y., Jang, W.D., Nishiyama, N., Fukushima, S. and Kataoka, K., 2005a. Multifunctional polymeric micelles with folatemediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol Biosyst 1(3), 242-50. https://doi.org/10.1039/b500266d
  9. Bae, Y., Nishiyama, N., Fukushima, S., Koyama, H., Yasuhiro, M. and Kataoka, K., 2005b. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug Chem 16(1), 122-30. https://doi.org/10.1021/bc0498166
  10. Bawa, P., Pillay, V., Choonara, Y.E. and Toit, L.C.D., 2009. Stimuli-responsive polymers and their applications in drug delivery Biomedical Materials 4(2).
  11. Benns, J.M., Choi, J.S., Mahato, R.I., Park, J.S. and Kim, S.W., 2000. pH-sensitive cationic polymer gene delivery vehicle: NAc-poly(L-histidine)-graft-poly(L-lysine) comb shaped polymer. Bioconjug Chem 11(5), 637-45. https://doi.org/10.1021/bc0000177
  12. Boussif, O., Delair, T., Brua, C., Veron, L., Pavirani, A. and Kolbe, H.V.J., 1999. Synthesis of Polyallylamine Derivatives and Their Use as Gene Transfer Vectors in Vitro. Bioconjugate Chemistry 10(5), 877-883. https://doi.org/10.1021/bc9900439
  13. Brannon-Peppas, L. and Blanchette, J.O., 2004. Nanoparticle and targeted systems for cancer therapy. Advanced Drug Delivery Reviews 56(11), 1649-1659. https://doi.org/10.1016/j.addr.2004.02.014
  14. Brown, M.D., Schatzlein, A.G. and Uchegbu, I.F., 2001. Gene delivery with synthetic (non viral) carriers. Int J Pharm 229(1-2), 1-21. https://doi.org/10.1016/S0378-5173(01)00861-4
  15. Burt, H.M., Zhang, X., Toleikis, P., Embree, L. and Hunter, W.L., 1999. Development of copolymers of poly(DL-lactide) and methoxypolyethylene glycol as micellar carriers of paclitaxel. Colloids Surf., B: Biointerfaces 16(1-4), 161-171. https://doi.org/10.1016/S0927-7765(99)00067-3
  16. Couvreur, P. and Vauthier, C., 2006. Nanotechnology: intelligent design to treat complex disease. Pharm Res 23(7), 1417-50. https://doi.org/10.1007/s11095-006-0284-8
  17. Dietz, G.P.H. and Bhr, M., 2004. Delivery of bioactive molecules into the cell: the Trojan horse approach. Molecular and Cellular Neuroscience 27(2), 85-131. https://doi.org/10.1016/j.mcn.2004.03.005
  18. Domard, A. and Rinaudo, M., 2002. Chitosane: structure-properties relationship and biomedical applications. In: Polymeric Biomaterials. S. Dumitriu. CRC Press, Boca Raton: chapter 9.
  19. Dufes, C., Uchegbu, I.F. and Schatzlein, A.G., 2005. Dendrimers in gene delivery. Adv Drug Deliv Rev 57(15), 2177-202. https://doi.org/10.1016/j.addr.2005.09.017
  20. Duncan, R., 2003. The dawning era of polymer therapeutics. Nat Rev Drug Discov 2(5), 347-360. https://doi.org/10.1038/nrd1088
  21. Ehrlich, P., 1960. The collected papers of Paul Enrlich. Pergamon. London,
  22. Farrell, L.L., Pepin, J., Kucharski, C., Lin, X., Xu, Z. and Uludag, H., 2007. A comparison of the effectiveness of cationic polymers poly-L-lysine (PLL) and polyethylenimine (PEI) for nonviral delivery of plasmid DNA to bone marrow stromal cells (BMSC). Eur J Pharm Biopharm 65(3), 388-97. https://doi.org/10.1016/j.ejpb.2006.11.026
  23. Forrest, M.L., Won, C.-Y., Malick, A.W. and Kwon, G.S., 2006. In vitro release of the mTOR inhibitor rapamycin from poly(ethylene glycol)-poly([epsilon]-caprolactone) micelles. Journal of Controlled Release 110,(2), 370-377. https://doi.org/10.1016/j.jconrel.2005.10.008
  24. Gaucher, G., Dufresne, M.-H., Sant, V.P., Kang, N., Maysinger, D. and Leroux, J.-C., 2005a. Block copolymer micelles: preparation, characterization and application in drug delivery. Journal of Controlled Release 109(1-3), 169-188. https://doi.org/10.1016/j.jconrel.2005.09.034
  25. Gaucher, G.E., Dufresne, M.-H.E., Sant, V.P., Kang, N., Maysinger, D. and Leroux, J.-C., 2005b. Block copolymer micelles: preparation, characterization and application in drug delivery. Journal of Controlled Release 109(1-3), 169-188. https://doi.org/10.1016/j.jconrel.2005.09.034
  26. Ge, H., Hu, Y., Jiang, X., Cheng, D., Yuan, Y., Bi, H. and Yang, C., 2002. Preparation, characterization, and drug release behaviors of drug nimodipine-loaded poly(${\varepsilon}$-caprolactone)-poly(ethylene oxide)-poly(ε-caprolactone) amphiphilic triblock copolymer micelles. Journal of Pharmaceutical Sciences 91(6), 1463-1473. https://doi.org/10.1002/jps.10143
  27. Gillies, R.J., Raghunand, N., Garcia-Martin, M.L. and Gatenby, R.A., 2004. pH imaging. A review of pH measurement methods and applications in cancers. IEEE Eng Med Biol Mag 23(5), 57-64. https://doi.org/10.1109/MEMB.2004.1360409
  28. Gore, M.E., 2003. Adverse effects of gene therapy: Gene therapy can cause leukaemia: no shock, mild horror but a probe. Gene Ther 10(1), 4-4. https://doi.org/10.1038/sj.gt.3301946
  29. Gref, R., Minamitake, Y., Peracchia, M.T., Trubetskoy, V., Torchilin, V. and Langer, R., 1994. Biodegradable long-circulating polymeric nanospheres. Science 263(5153), 1600-1603. https://doi.org/10.1126/science.8128245
  30. Hayashi, H., Iijima, M., Kataoka, K. and Nagasaki, Y., 2004. pHSensitive Nanogel Possessing Reactive PEG Tethered Chains on the Surface. Macromolecules 37(14), 5389-5396. https://doi.org/10.1021/ma049199g
  31. Hruby, M., Konak, C. and Ulbrich, K., 2005. Polymeric micellar pH-sensitive drug delivery system for doxorubicin. J Control Release 103(1), 137-48. https://doi.org/10.1016/j.jconrel.2004.11.017
  32. Ihm, J., Han, K., Han, L., Ahn, K., Han, D. and Cho, C., 2003. High Transfection Efficiency of Poly(4-vinylimidazole) as a New Gene Carrier. Bioconjugate Chem. 14,707-708. https://doi.org/10.1021/bc025611q
  33. Jain, A.K., Goyal, A.K., Mishra, N., Vaidya, B., Mangal, S. and Vyas, S.P., 2010. PEG-PLA-PEG block copolymeric nanoparticles for oral immunization against hepatitis B. Int J Pharm 387(1-2), 253-62. https://doi.org/10.1016/j.ijpharm.2009.12.013
  34. Jeong, B., Bae, Y.H. and Kim, S.W., 2000. Drug release from biodegradable injectable thermosensitive hydrogel of PEGPLGA-PEG triblock copolymers. Journal of Controlled Release 63(1-2), 155-163. https://doi.org/10.1016/S0168-3659(99)00194-7
  35. Jeong, B. and Gutowska, A., 2002. Lessons from nature: stimuliresponsive polymers and their biomedical applications. Trends Biotechnol 20(7), 305-11. https://doi.org/10.1016/S0167-7799(02)01962-5
  36. Jeong, J.H., Kim, S.W. and Park, T.G., 2007. Molecular design of functional polymers for gene therapy. Progress in Polymer Science 32(11), 1239-1274. https://doi.org/10.1016/j.progpolymsci.2007.05.019
  37. Jevprasesphant, R., Penny, J., Jalal, R., Attwood, D., Mckeown, N.B. and D'emanuele, A., 2003. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm 252(1-2), 263-6. https://doi.org/10.1016/S0378-5173(02)00623-3
  38. Kataoka, K., Harada, A. and Nagasaki, Y., 2001. Block copolymer micelles for drug delivery: design, characterization and biological significance. Advanced Drug Delivery Reviews 47(1), 113-131. https://doi.org/10.1016/S0169-409X(00)00124-1
  39. Khandare, J. and Minko, T., 2006. Polymer-drug conjugates: Progress in polymeric prodrugs. Progress in Polymer Science 31(4), 359-397. https://doi.org/10.1016/j.progpolymsci.2005.09.004
  40. Kim, D., Lee, E.S., Oh, K.T., Gao, Z.G. and Bae, Y.H., 2008. Doxorubicin-Loaded Polymeric Micelle Overcomes Multidrug Resistance of Cancer by Double-Targeting Folate Receptor and Early Endosomal pH. Small 4(11), 2043-2050. https://doi.org/10.1002/smll.200701275
  41. Kim, G.M., Bae, Y.H. and Jo, W.H., 2005a. pH-induced micelle formation of poly(histidine-co-phenylalanine)-block-poly(ethylene glycol) in aqueous media. Macromol Biosci 5(11), 1118-24. https://doi.org/10.1002/mabi.200500121
  42. Kim, I.-S., Jeong, Y.-I. and Kim, S.-H., 2000. Self-assembled hydrogel nanoparticles composed of dextran and poly(ethylene glycol) macromer. International Journal of Pharmaceutics 205(1-2), 109-116. https://doi.org/10.1016/S0378-5173(00)00486-5
  43. Kim, K., Kwon, S., Park, J.H., Chung, H., Jeong, S.Y., Kwon, I.C. and Kim, I.-S., 2005b. Physicochemical Characterizations of Self-Assembled Nanoparticles of Glycol Chitosan-deoxycholic Acid Conjugates. Biomacromolecules 6(2), 1154-1158. https://doi.org/10.1021/bm049305m
  44. Kim, S.Y., Shin, I.G., Lee, Y.M., Cho, C.S. and Sung, Y.K., 1998. Methoxy poly(ethylene glycol) and epsilon-caprolactone amphiphilic block copolymeric micelle containing indomethacin. II. Micelle formation and drug release behaviours. J Control Release 51(1), 13-22. https://doi.org/10.1016/S0168-3659(97)00124-7
  45. Kim, T.I., Seo, H.J., Choi, J.S., Jang, H.S., Baek, J.U., Kim, K. and Park, J.S., 2004. PAMAM-PEG-PAMAM: novel triblock copolymer as a biocompatible and efficient gene delivery carrier. Biomacromolecules 5(6), 2487-92. https://doi.org/10.1021/bm049563j
  46. Kircheis, R., Wightman, L. and Wagner, E., 2001. Design and gene delivery activity of modified polyethylenimines. Adv Drug Deliv Rev 53(3), 341-58. https://doi.org/10.1016/S0169-409X(01)00202-2
  47. Kissel, T., Li, Y. and Unger, F., 2002. ABA-triblock copolymers from biodegradable polyester A-blocks and hydrophilic poly(ethylene oxide) B-blocks as a candidate for in situ forming hydrogel delivery systems for proteins. Adv Drug Deliv Rev 54(1), 99-134. https://doi.org/10.1016/S0169-409X(01)00244-7
  48. Kumar, M.N.V.R., Muzzarelli, R.A.A., Muzzarelli, C., Sashiwa, H. and Domb, A.J., 2004. Chitosan Chemistry and Pharmaceutical Perspectives. Chemical Reviews 104(12), 6017-6084. https://doi.org/10.1021/cr030441b
  49. Kwon, G.S. and Kataoka, K., 1995. Block copolymer micelles as long-circulating drug vehicles. Adv. Drug Delivery Rev. 16(2-3), 295-309. https://doi.org/10.1016/0169-409X(95)00031-2
  50. Kwon, G.S. and Okano, T., 1996. Polymeric micelles as new drug carriers. Advanced Drug Delivery Reviews 21(2), 107-116. https://doi.org/10.1016/S0169-409X(96)00401-2
  51. Langer, R., 1980. Invited review polymeric delivery systems for controlled drug release chem. eng. commun 6(1-3), 1-48. https://doi.org/10.1080/00986448008912519
  52. Langer, R. and Peppas, N.A., 2003. Advances in biomaterials, drug delivery, and bionanotechnology. AIChE Journal 49(12), 2990-3006. https://doi.org/10.1002/aic.690491202
  53. Lechardeur, D., Verkman, A.S. and Lukacs, G.L., 2005. Intracellular routing of plasmid DNA during non-viral gene transfer. Adv Drug Deliv Rev 57(5), 755-67. https://doi.org/10.1016/j.addr.2004.12.008
  54. Lee, E.S., Gao, Z. and Bae, Y.H., 2008a. Recent progress in tumor pH targeting nanotechnology. J Control Release 132(3), 164-70. https://doi.org/10.1016/j.jconrel.2008.05.003
  55. Lee, E.S., Gao, Z., Kim, D., Park, K., Kwon, I.C. and Bae, Y.H., 2008b. Super pH-sensitive multifunctional polymeric micelle for tumor pH(e) specific TAT exposure and multidrug resistance. J Control Release 129(3), 228-36. https://doi.org/10.1016/j.jconrel.2008.04.024
  56. Lee, E.S., Kim, D., Youn, Y.S., Oh, K.T. and Bae, Y.H., 2008c. A virus-mimetic nanogel vehicle. Angew Chem Int Ed Engl 47(13), 2418-21. https://doi.org/10.1002/anie.200704121
  57. Lee, E.S., Na, K. and Bae, Y.H., 2003a. Polymeric micelle for tumor pH and folate-mediated targeting. Journal of Controlled Release 91(1-2), 103-113. https://doi.org/10.1016/S0168-3659(03)00239-6
  58. Lee, E.S., Na, K. and Bae, Y.H., 2005a. Doxorubicin loaded pHsensitive polymeric micelles for reversal of resistant MCF-7 tumor. Journal of Controlled Release 103(2), 405-418. https://doi.org/10.1016/j.jconrel.2004.12.018
  59. Lee, E.S., Na, K. and Bae, Y.H., 2005b. Super pH-Sensitive Multifunctional Polymeric Micelle. Nano Letters 5(2), 325-329. https://doi.org/10.1021/nl0479987
  60. Lee, E.S., Shin, H.J., Na, K. and Bae, Y.H., 2003b. Poly(-histidine)-PEG block copolymer micelles and pH-induced destabilization. Journal of Controlled Release 90(3), 363-374. https://doi.org/10.1016/S0168-3659(03)00205-0
  61. Lee, H., Kim, T.H. and Park, T.G., 2002. A receptor-mediated gene delivery system using streptavidin and biotin-derivatized, pegylated epidermal growth factor. J Control Release 83,(1), 109-19. https://doi.org/10.1016/S0168-3659(02)00166-9
  62. Lehrman, S., 1999. Virus treatment questioned after gene therapy death. Nature 401(6753), 517-8.
  63. Lewin, M., Carlesso, N., Tung, C.H., Tang, X.W., Cory, D., Scadden, D.T. and Weissleder, R., 2000. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18(4), 410-4. https://doi.org/10.1038/74464
  64. Lin, W.J., Chen, Y.C., Lin, C.C., Chen, C.F. and Chen, J.W., 2006. Characterization of pegylated copolymeric micelles and in vivo pharmacokinetics and biodistribution studies. Journal of Biomedical Materials Research Part B: Applied Biomaterials 77B(1), 188-194. https://doi.org/10.1002/jbm.b.30418
  65. Liu, Q. and Muruve, D.A., 2003. Molecular basis of the inflammatory response to adenovirus vectors. Gene Ther 10(11), 935-40. https://doi.org/10.1038/sj.gt.3302036
  66. Liu, Z., Jiao, Y., Wang, Y., Zhou, C. and Zhang, Z., 2008. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60(15), 1650-62. https://doi.org/10.1016/j.addr.2008.09.001
  67. Liua, F. and Urban, M., 2010. Recent advances and challenges in designing stimuli-responsive polymers Progress in Polymer Science 35(1-2), 3-23. https://doi.org/10.1016/j.progpolymsci.2009.10.002
  68. Lowman, A.M., Morishita, M., Kajita, M., Nagai, T. and Peppas, N.A., 1999. Oral delivery of insulin using pH-responsive complexation gels. Journal of Pharmaceutical Sciences 88(9), 933-937. https://doi.org/10.1021/js980337n
  69. Midoux, P. and Monsigny, M., 1999. Efficient gene transfer by histidylated polylysine/pDNA complexes. Bioconjug Chem 10(3), 406-11. https://doi.org/10.1021/bc9801070
  70. Moghimi, S.M., Hunter, A.C. and Murray, J.C., 2001. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacological Reviews 53(2), 283-318.
  71. Moghimi, S.M., Hunter, A.C. and Murray, J.C., 2005. Nanomedicine: current status and future prospects. FASEB J. 19(3), 311-330. https://doi.org/10.1096/fj.04-2747rev
  72. Mosqueira, V.C.F., Legrand, P., Morgat, J.-L., Vert, M., Mysiakine, E., Gref, R., Devissaguet, J.-P. and Barratt, G., 2001. Biodistribution of Long-Circulating PEG-Grafted Nanocapsules in Mice: Effects of PEG Chain Length and Density. Pharmaceutical Research 18(10), 1411-1419. https://doi.org/10.1023/A:1012248721523
  73. Na, K., Lee, E.S. and Bae, Y.H., 2003. Adriamycin loaded pullulan acetate/sulfonamide conjugate nanoparticles responding to tumor pH: pH-dependent cell interaction, internalization and cytotoxicity in vitro. J Control Release 87(1-3), 3-13. https://doi.org/10.1016/S0168-3659(02)00345-0
  74. Na, K., Lee, E.S. and Bae, Y.H., 2007. Self-Organized Nanogels Responding to Tumor Extracellular pH: pH-Dependent Drug Release and in Vitro Cytotoxicity against MCF-7 Cells. Bioconjugate Chemistry 18(5), 1568-1574. https://doi.org/10.1021/bc070052e
  75. Na, K., Lee, K.H. and Bae, Y.H., 2004. pH-sensitivity and pHdependent interior structural change of self-assembled hydrogel nanoparticles of pullulan acetate/oligo-sulfonamide conjugate. Journal of Controlled Release 97(3), 513-525. https://doi.org/10.1016/S0168-3659(04)00184-1
  76. Na, K., Park, K.-H., Kim, S.W. and Bae, Y.H., 2000. Self-assembled hydrogel nanoparticles from curdlan derivatives: characterization, anti-cancer drug release and interaction with a hepatoma cell line (HepG2). Journal of Controlled Release 69(2), 225-236. https://doi.org/10.1016/S0168-3659(00)00256-X
  77. Neuse, E.W., 2008. Synthetic polymers as drug-delivery vehicles in medicine. Met Based Drugs 2008, 469-531.
  78. Oh, K., Yin, H., Lee, E. and Beae, Y., 2007a. Polymeric nanovehicles for anticancer drugs with triggering release mechanisms. Journal of Materials Chemistry 17.
  79. Oh, K.T., Baik, H.J., Lee, A.H., Oh, Y.T., Youn, Y.S. and Lee, E.S., 2009a. The reversal of drug-resistance in tumors using a drugcarrying nanoparticular system. International journal of molecular sciences 10(9), 3776-92. https://doi.org/10.3390/ijms10093776
  80. Oh, K.T., Bronich, T.K., Kabanov, V.A. and Kabanov, A.V., 2007b. Block polyelectrolyte networks from poly(acrylic acid) and poly(ethylene oxide): sorption and release of cytochrome C. Biomacromolecules 8(2), 490-7. https://doi.org/10.1021/bm060599g
  81. Oh, K.T., Kim, D., You, H.H., Ahn, Y.S. and Lee, E.S., 2009b. pHsensitive properties of surface charge-switched multifunctional polymeric micelle. Int J Pharm 376(1-2), 134-40. https://doi.org/10.1016/j.ijpharm.2009.04.021
  82. Oh, K.T. and Lee, E.S., 2008. Cancer-associated pH-responsive tetracopolymeric micelles composed of poly(ethylene glycol)-poly(L-histidine)-poly(L-lactic acid)-poly(ethylene glycol). Polymers for Advanced Technologies 19(12), 1907-1913. https://doi.org/10.1002/pat.1228
  83. Oh, K.T., Oh, Y.T., Oh, N.-M., Kim, K., Lee, D.H. and Lee, E.S., 2009c. A smart flower-like polymeric micelle for pH-triggered anticancer drug release. International Journal of Pharmaceutics 375(1-2), 163-169. https://doi.org/10.1016/j.ijpharm.2009.04.005
  84. Oh, N.M., Oh, K.T., Baik, H.J., Lee, B.R., Lee, A.H., Youn, Y.S. and Lee, E.S., 2010. A self-organized 3-diethylaminopropylbearing glycol chitosan nanogel for tumor acidic pH targeting: In vitro evaluation. Colloids and Surfaces B: Biointerfaces 78(1), 120-126. https://doi.org/10.1016/j.colsurfb.2010.02.023
  85. Oishi, M., Hayashi, H., Iijima, M. and Nagasaki, Y., 2007. Endosomal release and intracellular delivery of anticancer drugs using pH-sensitive PEGylated nanogels. Journal of Materials Chemistry 17(35), 3720-3725. https://doi.org/10.1039/b706973a
  86. Park, J.H., Lee, S., Kim, J.-H., Park, K., Kim, K. and Kwon, I.C., 2008. Polymeric nanomedicine for cancer therapy. Progress in Polymer Science 33(1), 113-137. https://doi.org/10.1016/j.progpolymsci.2007.09.003
  87. Park, K., Lee, G.Y., Kim, Y.-S., Yu, M., Park, R.-W., Kim, I.-S., Kim, S.Y. and Byun, Y., 2006a. Heparin-deoxycholic acid chemical conjugate as an anticancer drug carrier and its antitumor activity. Journal of Controlled Release 114(3), 300-306. https://doi.org/10.1016/j.jconrel.2006.05.017
  88. Park, T.G., Jeong, J.H. and Kim, S.W., 2006b. Current status of polymeric gene delivery systems. Adv Drug Deliv Rev 58(4), 467-86. https://doi.org/10.1016/j.addr.2006.03.007
  89. Petersen, H., Fechner, P.M., Martin, A.L., Kunath, K., Stolnik, S., Roberts, C.J., Fischer, D., Davies, M.C. and Kissel, T., 2002. Polyethylenimine-graft-poly(ethylene glycol) copolymers: influence of copolymer block structure on DNA complexation and biological activities as gene delivery system. Bioconjug Chem 13(4), 845-54. https://doi.org/10.1021/bc025529v
  90. Ratner, B.D. and Hoffman, A.S., 1976. Synthetic hydrogels for biomedical applications. In: . In: Hydrogels for Medical and Related Applications. J.D. Andrade. American Chemical Society,, Washington, DC 1-36.
  91. Ravi Kumar, M.N.V., 2000. A review of chitin and chitosan applications. Reactive and Functional Polymers 46(1), 1-27. https://doi.org/10.1016/S1381-5148(00)00038-9
  92. Ruenraroengsak, P., Cook, J.M. and Florence, A.T., 2010. Nanosystem drug targeting: Facing up to complex realities. Journal of Controlled Release 141(3), 265-276. https://doi.org/10.1016/j.jconrel.2009.10.032
  93. Schmaljohann, D., 2006. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58(15), 1655-70. https://doi.org/10.1016/j.addr.2006.09.020
  94. Shin, I.G., Kim, S.Y., Lee, Y.M., Cho, C.S. and Sung, Y.K., 1998. Methoxy poly(ethylene glycol)/epsilon-caprolactone amphiphilic block copolymeric micelle containing indomethacin. I. Preparation and characterization. J Control Release 51(1), 1-11. https://doi.org/10.1016/S0168-3659(97)00164-8
  95. Son, Y.J., Jang, J.-S., Cho, Y.W., Chung, H., Park, R.-W., Kwon, I.C., Kim, I.-S., Park, J.Y., Seo, S.B., Park, C.R. and Jeong, S.Y., 2003. Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect. Journal of Controlled Release 91(1-2), 135-145. https://doi.org/10.1016/S0168-3659(03)00231-1
  96. Stuart, M.A.C., Huck, W.T.S., Genzer, J., Muller, M., Ober, C., Stamm, M., Sukhorukov, G.B., Szleifer, I., Tsukruk, V.V., Urban, M., Winnik, F., Zauscher, S., Luzinov, I. and Minko, S., 2010. Emerging applications of stimuli-responsive polymer materials. Nat Mater 9(2), 101-113. https://doi.org/10.1038/nmat2614
  97. Stubbs, M., Mcsheehy, P.M., Griffiths, J.R. and Bashford, C.L., 2000. Causes and consequences of tumour acidity and implications for treatment. Mol Med Today 6(1), 15-9. https://doi.org/10.1016/S1357-4310(99)01615-9
  98. Sun, J.Y., Anand-Jawa, V., Chatterjee, S. and Wong, K.K., 2003. Immune responses to adeno-associated virus and its recombinant vectors. Gene Ther 10(11), 964-76. https://doi.org/10.1038/sj.gt.3302039
  99. Tannock, I.F. and Rotin, D., 1989. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49(16), 4373-84.
  100. Torchilin, V.P., 2000. Drug targeting. European Journal of Pharmaceutical Sciences 11,(Supplement 2), S81-S91.
  101. Torchilin, V.P., 2002. PEG-based micelles as carriers of contrast agents for different imaging modalities. Adv Drug Deliv Rev 54(2), 235-52. https://doi.org/10.1016/S0169-409X(02)00019-4
  102. Uhrich, K.E., Cannizzaro, S.M., Langer, R.S. and Shakesheff, K.M., 1999. Polymeric systems for controlled drug release. Chem Rev 99(11), 3181-98. https://doi.org/10.1021/cr940351u
  103. Van Vlerken, L.E., Vyas, T.K. and Amiji, M.M., 2007. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res 24(8), 1405-14. https://doi.org/10.1007/s11095-007-9284-6
  104. Vandevord, P.J., Matthew, H.W.T., Desilva, S.P., Mayton, L., Wu, B. and Wooley, P.H., 2002. Evaluation of the biocompatibility of a chitosan scaffold in mice. Journal of Biomedical Materials Research 59(3), 585-590. https://doi.org/10.1002/jbm.1270
  105. Wittmar, M., Ellis, J.S., Morell, F., Unger, F., Schumacher, J.C., Roberts, C.J., Tendler, S.J.B., Davies, M.C. and Kissel, T., 2005. Biophysical and Transfection Studies of an Amine-Modified Poly(vinyl alcohol) for Gene Delivery. Bioconjugate Chemistry 16(6), 1390-1398. https://doi.org/10.1021/bc0500995
  106. Xu, P., Van Kirk, E.A., Li, S., Murdoch, W.J., Ren, J., Hussain, M.D., Radosz, M. and Shen, Y., 2006. Highly stable core-surface-crosslinked nanoparticles as cisplatin carriers for cancer chemotherapy. Colloids and Surfaces B: Biointerfaces 48(1), 50-57. https://doi.org/10.1016/j.colsurfb.2006.01.004
  107. Yamaoka, T., Tabata, Y. and Ikada, Y., 1994. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. Journal of Pharmaceutical Sciences 83(4), 601-606. https://doi.org/10.1002/jps.2600830432
  108. Yokoyama, M., Fukushima, S., Uehara, R., Okamoto, K., Kataoka, K., Sakurai, Y. and Okano, T., 1998. Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor. Journal of Controlled Release 50(1-3), 79-92. https://doi.org/10.1016/S0168-3659(97)00115-6
  109. Yu, S., Hu, J., Pan, X., Yao, P. and Jiang, M., 2006. Stable and pHSensitive Nanogels Prepared by Self-Assembly of Chitosan and Ovalbumin. Langmuir 22(6), 2754-2759. https://doi.org/10.1021/la053158b
  110. Yusa, Shin, I., Sugahara, Makoto, Endo, Tatsuya, Morishima and Yotaro, 2009. Preparation and Characterization of a pHResponsive Nanogel Based on a Photo-Cross-Linked Micelle Formed From Block Copolymers with Controlled Structure. American Chemical Society.Washington, DC, ETATS-UNIS,
  111. Zhang, S., Xu, Y., Wang, B., Qiao, W., Liu, D. and Li, Z., 2004. Cationic compounds used in lipoplexes and polyplexes for gene delivery. J Control Release 100(2), 165-80. https://doi.org/10.1016/j.jconrel.2004.08.019
  112. Zhang, Y. and Zhuo, R.-X., 2005. Synthesis and in vitro drug release behavior of amphiphilic triblock copolymer nanoparticles based on poly (ethylene glycol) and polycaprolactone. Biomaterials 26(33), 6736-6742. https://doi.org/10.1016/j.biomaterials.2005.03.045

Cited by

  1. Physicochemical characterizations of amphiphilic block copolymers with different MWs and micelles for development of anticancer drug nanocarriers vol.20, pp.9, 2012, https://doi.org/10.1007/s13233-012-0133-z
  2. A feasibility study of a pH sensitive nanomedicine using doxorubicin loaded poly(aspartic acid-graft-imidazole)-block-poly(ethylene glycol) micelles vol.2, pp.9, 2014, https://doi.org/10.1039/c3tb21379j
  3. Triblock copolymers for nano-sized drug delivery systems vol.47, pp.1, 2017, https://doi.org/10.1007/s40005-016-0291-7
  4. Recent advance of pH-sensitive nanocarriers targeting solid tumors vol.47, pp.5, 2017, https://doi.org/10.1007/s40005-017-0349-1
  5. -poly(ethylene glycol) vol.135, pp.20, 2018, https://doi.org/10.1002/app.46268
  6. A novel 1,2,3-benzotriazolium based ionic liquid monomer for preparation of MMT/poly ionic liquid (PIL) pH-sensitive positive charge nanocomposites vol.131, pp.3, 2019, https://doi.org/10.1007/s12039-019-1592-y