• Title/Summary/Keyword: Polymer substrates

Search Result 340, Processing Time 0.054 seconds

Characteristics of the indium tin oxide film grown on PES and PET substrates by a low-frequency magnetron sputtering method

  • Jung, Sang-Kooun;Lee, Sung-Ho;Kim, Myung-Chan;Lee, Do-Kyung;Cho, Yong;Park, Duck-Kyu;Sohn, Sang-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1560-1563
    • /
    • 2005
  • In this study, we introduce indium tin oxide (ITO) thin films grown by using a low-frequency magnetron sputtering method (LFMSM). Characteristics of the ITO thin films deposited on polyethersulfone (PES) and polyethylene terephthalate (PET) substrates are investigated. Experiments were carried out as a function of deposition time. ITO thin films on polymer substrates revealed amorphous structure. The optical, the electrical and structural properties of the films on PES substrate are better than those on PET substrates.

  • PDF

Mussel-Inspired, Fast Surface Modification of Solid Substrates

  • Hong, Sang-Hyeon;Kang, Sung-Min;Lee, Hae-Shin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.201-201
    • /
    • 2011
  • Recently, mussel-inspired surface modification, called polydopamine coating has been extensively implemented to many areas, due to its material versatility and ease to use. In particular, incubation of substrates in an alkaline dopamine solution resulted in self-polymerization of dopamine and modified variety of material surfaces, including noble metals, metal oxides, ceramics, and synthetic polymers. However, the polydopamine coating has a drawback to practical use; it takes more than 12 hrs to introduce sufficient polydopamine layers to solid substrates. Here, we investigated the rate-enhanced polydopamine coating by varying reaction conditions: pH, concentration, and the addition of the oxidizing agent. As a result, the optimum condition for fast polydopamine coating was found, and solid substrates were efficiently coated with polydopamine layers in just few minutes using the condition. The polydopamine-modified surface was characterized by XPS and contact angle goniometry, and the biocompatibility of the modified surface was also proved by cell attachment test.

  • PDF

Quantitative Analysis of Growth of Cells on Physicochemically Modified Surfaces

  • Chandra, Prakash;Kim, Jihee;Rhee, Seog Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.524-530
    • /
    • 2013
  • In this study, we describe the most expected behavior of cells on the modified surface and the correlation between the modified substrates and the response of cells. The physicochemical characteristics of substrates played an essential role in the adhesion and proliferation of cells. Glass and polymer substrates were modified using air plasma oxidation, and the surfaces were coated with self-assembled monolayer molecules of silanes. The PDMS substrates embedded with parallel micropatterns were used for evaluation of the effect of topologically modified substrate on cellular behaviour. BALB/3T3 fibroblast cells were cultured on different surfaces with distinct wettability and topology, and the growth rates and morphological change of cells were analyzed. Finally, we found the optimum conditions for the adhesion and proliferation of cells on the modified surface. This study will provide insight into the cell-surface interaction and contribute to tissue engineering applications.

Microstructural Properties of the Polymer/MWCNT Transparent Conduction Film Fabricated on the $50{\mu}m$ Kepton Substrate ($50{\mu}m$ 켑톤 기판에 성막된 Polymer/MWCNT 투명 전도막의 미세구조)

  • Jang, Kyung-Uk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.253-253
    • /
    • 2010
  • The Polymer/MWCNT composite films were fabricated by air-spray method under the 2 kg/$cm^2$ pressure using the multi-walled CNTs solution and the polymer on a $50{\mu}m$ kepton film substrates. We obtained the composite films which were sprayed with the MWCNT dispersion. In order to analysis the microstructure for the fabricated Polymer/MWCNT film, we used the X-ray diffraction (XRD) and SEM.

  • PDF

Reduction of viewing-angle dependent color shift in a reflective type cholesteric liquid crystal color filter

  • Jang, Won-Gun;Beom, Tae-Won;Cui, Hao;Park, Jong-Rak;Hwang, Seong-Jin;Lim, Young-Jin;Lee, Seung-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1656-1659
    • /
    • 2008
  • The reflective type color filter for the liquid crystal displays (LCD) was produced using cholesteric liquid crystal monomers whose phase is characterized by the unique optical features of selective reflection. Periodic micrometer scale hemi-spherical photoresist (PR) patterns were formed on glass substrates by thermal reflow method after photolithography. Cholesteric color filter films for red, green and blue light reflections were then produced and the viewing angle dependence was investigated and compared with that of reflected light on the non-patterned substrates.

  • PDF

Chemical Fixation of Polyelectrolyte Multilayers on Polymer Substrates

  • Tuong, Son Duy;Lee, Hee-Kyung;Kim, Hong-Doo
    • Macromolecular Research
    • /
    • v.16 no.4
    • /
    • pp.373-378
    • /
    • 2008
  • A simple chemical fixation method for the fabrication of layer-by-layer (LbL) polyelectrolyte multilayer (PEM) has been developed to create a large area, highly uniform film for various applications. PEM of weak poly-electrolytes, i.e., polyallylamine hydrogen chloride (PAH) and poly(acrylic acid)(PAA), was assembled on polymer substrates such as poly(methyl methacrylate)(PMMA) and polycarbonate (PC). In the case of a weak polyelectrolyte, the fabricated thin film thickness of the polyelectrolyte multilayers was strongly dependent on the pH of the processing solution, which enabled the film thickness or optical properties to be controlled. On the other hand, the environmental stability for device application was poor. In this study, we utilized the chemical fixation method using glutaraldehyde (GA)-amine reaction in order to stabilize the polyelectrolyte multilayers. By simple treatment of GA on the PEM film, the inherent morphology was fixed and the adhesion and mechanical strength were improved. Both surface tension and FT-IR measurements supported the chemical cross-linking reaction. The surface property of the polyelectrolyte films was altered and converted from hydrophilic to hydrophobic by chemical modification. The possible application to antireflection coating on PMMA and PC was demonstrated.

Carbon Particle-Doped Polymer Layers on Metals as Chemically and Mechanically Resistant Composite Electrodes for Hot Electron Electrochemistry

  • Habiba, Nur-E;Uddin, Rokon;Salminen, Kalle;Sariola, Veikko;Kulmala, Sakari
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.100-111
    • /
    • 2022
  • This paper presents a simple and inexpensive method to fabricate chemically and mechanically resistant hot electron-emitting composite electrodes on reusable substrates. In this study, the hot electron emitting composite electrodes were manufactured by doping a polymer, nylon 6,6, with few different brands of carbon particles (graphite, carbon black) and by coating metal substrates with the aforementioned composite ink layers with different carbon-polymer mass fractions. The optimal mass fractions in these composite layers allowed to fabricate composite electrodes that can inject hot electrons into aqueous electrolyte solutions and clearly generate hot electron- induced electrochemiluminescence (HECL). An aromatic terbium (III) chelate was used as a probe that is known not to be excited on the basis of traditional electrochemistry but to be efficiently electrically excited in the presence of hydrated electrons and during injection of hot electrons into aqueous solution. Thus, the presence of hot, pre-hydrated or hydrated electrons at the close vicinity of the composite electrode surface were monitored by HECL. The study shows that the extreme pH conditions could not damage the present composite electrodes. These low-cost, simplified and robust composite electrodes thus demonstrate that they can be used in HECL bioaffinity assays and other applications of hot electron electrochemistry.

Adhesion Properties on the Molecular Weight and Various Substrates of Multi-layered Structural Acrylic Adhesive (다층구조형 아크릴 점착제의 분자량 및 피착재 종류에 따른 접착특성)

  • Kim, Dong-Bok
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.514-521
    • /
    • 2015
  • In this study, we would like to describe peel strength and dynamic shear property on various substrates of multi-layered structural double-sided adhesive tape with or without adhesive (AD) prepared by UV curing for an automobile, construction, and display junction. According to adapt the adhesive, the peel and dynamic shear strength of adhesion tape prepared with acrylic foam or various plastic substrates increased with increasing molecular weight, however, decreased over 650000 molecular weight. The adhesion property shows high value at the thin AD layer with decreasing temperature. The interface property shows highest at MW 615000 (AD-4), and the interface junction below MW 615000 resulted to divide from acrylic foam and adhesive layer. From this study, the multi-layered structural double-sided adhesive tapes seem to be a useful for industrial area such as a low surface energy plastic material and curved substrate.