Chemical Fixation of Polyelectrolyte Multilayers on Polymer Substrates

  • Tuong, Son Duy (Department of Chemistry, EIRC, Kyung Hee University) ;
  • Lee, Hee-Kyung (Department of Chemistry, EIRC, Kyung Hee University) ;
  • Kim, Hong-Doo (Department of Chemistry, EIRC, Kyung Hee University)
  • Published : 2008.06.30

Abstract

A simple chemical fixation method for the fabrication of layer-by-layer (LbL) polyelectrolyte multilayer (PEM) has been developed to create a large area, highly uniform film for various applications. PEM of weak poly-electrolytes, i.e., polyallylamine hydrogen chloride (PAH) and poly(acrylic acid)(PAA), was assembled on polymer substrates such as poly(methyl methacrylate)(PMMA) and polycarbonate (PC). In the case of a weak polyelectrolyte, the fabricated thin film thickness of the polyelectrolyte multilayers was strongly dependent on the pH of the processing solution, which enabled the film thickness or optical properties to be controlled. On the other hand, the environmental stability for device application was poor. In this study, we utilized the chemical fixation method using glutaraldehyde (GA)-amine reaction in order to stabilize the polyelectrolyte multilayers. By simple treatment of GA on the PEM film, the inherent morphology was fixed and the adhesion and mechanical strength were improved. Both surface tension and FT-IR measurements supported the chemical cross-linking reaction. The surface property of the polyelectrolyte films was altered and converted from hydrophilic to hydrophobic by chemical modification. The possible application to antireflection coating on PMMA and PC was demonstrated.

Keywords

References

  1. G. Decher, J. D. Hong, and J. Schmitt, Thin Solid Films, 210-211, 831 (1992) https://doi.org/10.1016/0040-6090(92)90417-A
  2. J. Hiller, J. D. Mendelsohn, and M. F. Rubner, Nature Mater., 1, 59 (2002) https://doi.org/10.1038/nmat719
  3. S. L. Clark, M. F. Montague, and P. T. Hammond, Macromolecules, 30, 7237 (1997) https://doi.org/10.1021/ma970610s
  4. P. T. H. Sarah and L. Clark, Adv. Mater., 10, 1515 (1998) https://doi.org/10.1002/(SICI)1521-4095(199812)10:18<1515::AID-ADMA1515>3.0.CO;2-E
  5. H. Zheng, I. Lee, M. F. Rubner, and P. T. Hammond, Adv. Mater., 14, 569 (2002) https://doi.org/10.1002/1521-4095(20020418)14:8<569::AID-ADMA569>3.0.CO;2-O
  6. A. C. Fou, O. Onitsuka, M. Ferreira, M. F. Rubner, and B. R. Hsieh, J. Appl. Phys., 79, 7501 (1996) https://doi.org/10.1063/1.362421
  7. A. C. Fou and M. F. Rubner, Macromolecules, 28, 7115 (1995) https://doi.org/10.1021/ma00125a013
  8. O. Onitsuka, A. C. Fou, M. Ferreira, B. R. Hsieh, and M. F. Rubner, J. Appl. Phys., 80, 4067 (1996) https://doi.org/10.1063/1.363369
  9. P. K. H. Ho, J.-S. Kim, J. H. Burroughes, H. Becker, F. Y. L. Sam, T. M. Brown, F. Cacialli, and R. H. Friend, Nature, 404, 481 (2000) https://doi.org/10.1038/35006610
  10. M. Eckle and G. Decher, Nano Lett., 1, 45 (2001) https://doi.org/10.1021/nl005514a
  11. J. Cho, K. Char, S. Y. Kim, J. D. Hong, S. K. Lee, and D. Y. Kim, Thin Solid Films, 379, 188 (2000) https://doi.org/10.1016/S0040-6090(00)01555-8
  12. D. M. Sullivan and M. L. Bruening, J. Am. Chem. Soc., 123, 11805 (2001) https://doi.org/10.1021/ja016536h
  13. S. T. Dubas, T. R. Farhat, and J. B. Schlenoff, J. Am. Chem. Soc., 123, 5368 (2001) https://doi.org/10.1021/ja015774+
  14. H. H. Rmaile and J. B. Schlenoff, J. Am. Chem. Soc., 125, 6602 (2003) https://doi.org/10.1021/ja035251x
  15. C.-W. Lee, J.-G. Kim, and M.-S. Gong, Macromol. Res., 13, 265 (2005) https://doi.org/10.1007/BF03219062
  16. J. D. Mendelsohn, C. J. Barrett, V. V. Chan, A. J. Pal, A. M. Mayes, and M. F. Rubner, Langmuir, 16, 5017 (2000) https://doi.org/10.1021/la000075g
  17. J. J. Harris, P. M. DeRose, and M. L. Bruening, J. Am. Chem. Soc., 121, 1978 (1999) https://doi.org/10.1021/ja9833467
  18. J. L. Stair, J. J. Harris, and M. L. Bruening, Chem. Mater., 13, 2641 (2001) https://doi.org/10.1021/cm010166e
  19. P. Schuetz and F. Caruso, Adv. Func. Mater., 13, 929 (2003) https://doi.org/10.1002/adfm.200304483
  20. L. Richert, F. Boulmedais, P. Lavalle, J. Mutterer, E. Ferreux, G. Decher, P. Schaaf, J. C. Voegel, and C. Picart, Biomacromolecules, 5, 284 (2004) https://doi.org/10.1021/bm0342281
  21. S. Y. Yang, D. Lee, R. E. Cohen, and M. F. Rubner, Langmuir, 20, 5978 (2004) https://doi.org/10.1021/la0490442
  22. J. Sun, T. Wu, F. Liu, Z. Wang, X. Zhang, and J. Shen, Langmuir, 16, 4620 (2000) https://doi.org/10.1021/la991482z
  23. M. K. Park, S. Deng, and R. C. Advincula, J. Am. Chem. Soc., 126, 13723 (2004) https://doi.org/10.1021/ja0484707
  24. S. C. Olugebefola, S. W. Ryu, A. J. Nolte, M. F. Rubner, and A. M. Mayes, Langmuir, 22, 5958 (2006) https://doi.org/10.1021/la060315d
  25. D. D. Sabatini, K. Bensch, and R. J. Barrnett, J. Cell Biol., 17, 19 (1963) https://doi.org/10.1083/jcb.17.1.19
  26. M. Okubo, K. Ikegami, and Y. Yamamoto, Colloid Polym. Sci., 267, 193 (1989) https://doi.org/10.1007/BF01410575
  27. D. Yoo, S. S. Shiratori, and M. F. Rubner, Macromolecules, 31, 4309 (1998) https://doi.org/10.1021/ma9800360