Browse > Article
http://dx.doi.org/10.33961/jecst.2021.00640

Carbon Particle-Doped Polymer Layers on Metals as Chemically and Mechanically Resistant Composite Electrodes for Hot Electron Electrochemistry  

Habiba, Nur-E (Faculty of Medicine and Health Technology, Tampere University)
Uddin, Rokon (Department of Chemistry and Materials Science, Aalto University)
Salminen, Kalle (Department of Chemistry and Materials Science, Aalto University)
Sariola, Veikko (Faculty of Medicine and Health Technology, Tampere University)
Kulmala, Sakari (Department of Chemistry and Materials Science, Aalto University)
Publication Information
Journal of Electrochemical Science and Technology / v.13, no.1, 2022 , pp. 100-111 More about this Journal
Abstract
This paper presents a simple and inexpensive method to fabricate chemically and mechanically resistant hot electron-emitting composite electrodes on reusable substrates. In this study, the hot electron emitting composite electrodes were manufactured by doping a polymer, nylon 6,6, with few different brands of carbon particles (graphite, carbon black) and by coating metal substrates with the aforementioned composite ink layers with different carbon-polymer mass fractions. The optimal mass fractions in these composite layers allowed to fabricate composite electrodes that can inject hot electrons into aqueous electrolyte solutions and clearly generate hot electron- induced electrochemiluminescence (HECL). An aromatic terbium (III) chelate was used as a probe that is known not to be excited on the basis of traditional electrochemistry but to be efficiently electrically excited in the presence of hydrated electrons and during injection of hot electrons into aqueous solution. Thus, the presence of hot, pre-hydrated or hydrated electrons at the close vicinity of the composite electrode surface were monitored by HECL. The study shows that the extreme pH conditions could not damage the present composite electrodes. These low-cost, simplified and robust composite electrodes thus demonstrate that they can be used in HECL bioaffinity assays and other applications of hot electron electrochemistry.
Keywords
Hot Electron Electrochemistry; Hot Electron-Induced Electrochemiluminescence; Composite Electrodes; Hot Electron Injection; Hydrated Electrons;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Hakansson, Q. Jiang, J. Suomi, K. Loikas, M. Nauma, T. Ala-Kleme, J. Kankare, P. Juhala, J.U. Eskola, S. Kulmala, Anal. Chim. Acta., 2006, 556(2), 450-454.   DOI
2 T. Ylinen-Hinkka, A.J. Niskanen, S. Franssila, S. Kulmala, Anal. Chim. Acta., 2011, 702(1), 45- 49.   DOI
3 M. Hakansson, K. Salminen, P. Kuosmanen, J. Eskola, H. Peuravuori, S. Kulmala, J. Electroanal. Chem., 2016, 769, 11-15.   DOI
4 Q. Jiang, A.-M. Spehar, M. Hakansson, J. Suomi, T. Ala-Kleme, S. Kulmala, Electrochim. Acta., 2006, 51(13), 2706-2714.   DOI
5 Q. Jiang, S. Sun, M. Hakansson, K. Langel, T. Ylinen, J. Suomi, S. Kulmala, J. Lumin., 2006, 118, 265-271.   DOI
6 S. Farooq, C.N. Kurucz, T.D. Waite, W.J. Cooper, Water Res., 1993, 27(7), 1177-1184.   DOI
7 Z.A. Rotenberg, Y.A. Prishchepa, Y.V. Pleskov, J. Electroanal. Chem. Interfacial Electrochem., 1974, 56, 345-371.   DOI
8 M.C. Sauer, R.A. Crowell, I.A. Shkrob, J. Phys. Chem., 2004, 108(25), 5490-5502.   DOI
9 S. Kulmala, M. Hakansson, A.-M. Spehar, A. Nyman, J. Kankare, K. Loikas, T. Ala- Kleme, J. Eskola, Anal. Chim. Acta., 2002, 458(2), 271-280.   DOI
10 H.-I. Joschek, L.I. Grossweiner, J. Am. Chem. Soc., 1966, 88(14), 3261-3268.   DOI
11 P. Kuosmanen, K. Salminen, M. Pusa, T. Ala-Kleme, S. Kulmala, J. Electroanal. Chem., 2016, 783, 63-67.   DOI
12 S. Kulmala, A. Hakanen, P. Raerinne, A. Kulmala, K. Haapakka, Anal. Chim. Acta., 1995, 309(1-3), 197-210.   DOI
13 A. D. Stiff-Roberts, X. H. Su, S. Chakrabarti, P. Bhattacharya, IEEE Photonics Technology Letters, 2004, 16(3), 867-869.   DOI
14 K. Hossain, Y.A. Maruthi, N.L. Das, K.P. Rawat, K.S.S. Sarma, Appl. Water Sci., 2018, 8(1), 1-11.   DOI
15 S. Kulmala, A. Kulmala, T. Ala-Kleme, J. Pihlaja, Anal. Chim. Acta., 1998, 367 (1-3), 17-31.   DOI
16 M. H. O. Sampa, S.I. Borrely, B.L. Silva, J.M. Vieira, P.R. Rela, W.A.P. Calvo, R.C. Nieto, C.L. Duarte, H.E.B. Perez, E.S. Somessari, A.B. Lugao, Radiat. Phys. Chem., 1995, 46(4-6), 1143-1146.   DOI
17 P.-P. Ilich, K.R. McCormick, A.D. Atkins, G.J. Mell, T.J. Flaherty, M.J. Bruck, H.A. Goodrich, A.L. Hefel, N. Juranic, S. Seleem, J. Chem. Educ., 2010, 87(4), 419-422.   DOI
18 A. J. Niskanen, T. Ylinen-Hinkka, S. Kulmala, S. Franssila, Sensors Actuators B Chem., 2011, 152(1), 56-62.   DOI
19 S. Kulmala, T. Ala-Kleme, L. Heikkila, L. Vare, J. Chem. Soc., Faraday Trans., 1997, 93(17), 3107-3113.   DOI
20 S. Kulmala, T. Ala-Kleme, H. Joela, A. Kulmala, J. Radioanal. Nucl. Chem., 1998, 232(1-2), 91-96.   DOI
21 J. Suomi, S. Kulmala, Hot Electron-Induced Electrogenerated Chemiluminescence, in: Chris D. Geddes (Ed.), Rev. Fluoresc. 2009, 2011, 47-73.
22 K. Salminen, P. Gronroos, J. Eskola, E. Nieminen, H. Harma, S. Kulmala, Electrochim. Acta., 2018, 282, 147-154.   DOI
23 K. Salminen, P. Kuosmanen, M. Pusa, O. Kulmala, M. Hakansson, S. Kulmala, Anal. Chim. Acta., 2016, 912, 24-31.   DOI
24 S. Kulmala, T. Ala-Kleme, A. Kulmala, and D. Papkovsky, K. Loikas, Anal. Chem., 1998, 70(6), 1112-1118.   DOI
25 S. Kulmala, C. Matachescu, A. Kulmala, D. Papkovsky, M. Hakansson, H. Ketamo, P. Canty, Anal. Chim. Acta., 2002, 453(2), 253-267.   DOI
26 A. J. Niskanen, T. Ylinen-Hinkka, S. Kulmala, S. Franssila, Thin Solid Films., 2009, 517(19), 5779-5782.   DOI
27 A. J. Niskanen, T. Ylinen-Hinkka, M. Pusa, S. Kulmala, S. Franssila, Thin Solid Films., 2010, 519(1), 430-433.   DOI
28 J. Suomi, T. Ylinen, M. Hakansson, M. Helin, Q. Jiang, T. Ala-Kleme, S. Kulmala, J. Electroanal. Chem., 2006, 586(1), 49-55.   DOI
29 Q. Jiang, J. Suomi, M. Hakansson, A.J. Niskanen, M. Kotiranta, S. Kulmala, Anal. Chim. Acta., 2005, 541(1-2), 157-163.   DOI
30 T. Ala-Kleme, S. Kulmala, L. Vare, and P. Juhala, M. Helin, Anal. Chem., 1999, 71 (24), 5538-5543.   DOI
31 G. V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, J. Phys. Chem. Ref. Data., 1988, 17(2), 513-886.   DOI
32 C. L. Duarte, M.H.O. Sampa, P.R. Rela, H. Oikawa, C.G. Silveira, A.L. Azevedo, Radiat. Phys. Chem., 2002, 63(3), 647-651.   DOI
33 B.G. Ershov, Russ. Chem. Rev., 1997, 66(2), 93-105.   DOI
34 C.N. Kurucz, T.D. Waite, W.J. Cooper, M.J. Nickelsen, High Energy Electron Beam Irradiation of Water, Wastewater and Sludge, in: Springer, Boston, MA, 1991, 1- 43.
35 Y.A. Maruthi, N.L. Das, K. Hossain, K.S.S. Sarma, K.P. Rawat, S. Sabharwal, Appl. Water Sci., 2011, 1, 49-56.   DOI
36 R.J. Palmer, Polyamides, Plastics, in: Encycl. Polym. Sci. Technol., John Wiley & Sons, Inc., Hoboken, NJ, USA, 2001.
37 L.I. Grossweiner, G.W. Swenson, E.F. Zwicker, Science, 1963, 141(3583), 805-6.   DOI
38 N.A. Atari, J. Lumin., 1980, 21, 387-396.   DOI
39 P. Gronroos, K. Salminen, J. Paltakari, Q. Zhang, N. Wei, E. Kauppinen, S. Kulmala, J. Electroanal. Chem., 2019, 833, 349-356.   DOI
40 M.I. Kohan, Nylon plastics handbook, Hanser Publishers, Munich, Germany, 1995.
41 M. J. Hagmann, Appl. Phys. Lett., 1995, 66(7), 789.   DOI
42 C.-Z. Ye, C.-X. Zhang, Y.-H. Nie, J.-Q. Liang, Phys. Rev. B., 2007, 76(3).
43 J.-M. Bonard, H. Kind, T. Stockli, L.-O. Nilsson, Solid-State Electronics, 2001, 45(6), 893-914.   DOI
44 C. N. Kurucz, T.D. Waite, W.J. Cooper, Radiat. Phys. Chem., 1995, 45(2), 299- 308.   DOI
45 R. Naumann, F. Lehmann, M. Goez, Angew. Chem. Int. Ed., 2018, 57(4), 1078-1081.   DOI
46 T. Ala-Kleme, S. Kulmala, Q. Jiang, Luminescence., 2006, 21(2), 118-125.   DOI
47 S. Kulmala, T. Ala-Kleme, M. Latva, K. Loikas, H. Takalo, J. Fluoresc., 1998, 8, 59-65.   DOI
48 K. Salminen, P. Gronroos, S. Tuomi, S. Kulmala, Anal. Chim. Acta., 2017, 985, 54-60.   DOI