• Title/Summary/Keyword: Polymer pyrolysis

Search Result 116, Processing Time 0.029 seconds

Electrochemical Performance of High-Voltage LiMn0.8Fe0.2PO4 Cathode with Polyacrylonitrile (PAN)-Based Gel Polymer Electrolyte

  • Kwon, O. Hyeon;Kim, Jae-Kwang
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.547-552
    • /
    • 2019
  • Electrochemical properties of $LiMn_{0.8}Fe_{0.2}PO_4$ cathode were investigated with gel polymer electrolyte (GPE). To access fast and efficient transport of ions and electrons during the charge/discharge process, a pure and well-crystallized $LiMn_{0.8}Fe_{0.2}PO_4$ cathode material was directly synthesized via spray-pyrolysis method. For high operation voltage, polyacrylonitrile (PAN)-based gel polymer electrolyte was then prepared by electrospinning process. The gel polymer electrolyte showed high ionic conductivity of $2.9{\times}10^{-3}S\;cm^{-1}$ at $25^{\circ}C$ and good electrochemical stability. $Li/GEP/LiMn_{0.8}Fe_{0.2}PO_4$ cell delivered a discharge capacity of $159mAh\;g^{-1}$ at 0.1 C rate that was close to the theoretical value ($170mAh\;g^{-1}$). The cell allows stable cycle performance (99.3% capacity retention) with discharge capacity of $133.5mAh\;g^{-1}$ for over 300 cycles at 1 C rate and exhibits high rate-capability. PAN-based gel polymer is a suitable electrolyte for application in $LiMn_{0.8}Fe_{0.2}PO_4/Li$ batteries with perspective in high energy density and safety.

Synthesis and Characterization of Bi2Sr2Ca2Cu3Ox Powders by Ultrasonic Spray Pyrolysis Method (Ultrasonic Spray Pyrolysis 법에 의한 Bi2Sr2Ca2Cu3Ox 분말합성 및 특성평가)

  • Bae, Bung-Su;Jung, Sang-Jin;Lee, Bong;Moon, Chang-Kwun;Choi, Hee-Lack
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.86-91
    • /
    • 2010
  • Superconductor material $Bi_2Sr_2Ca_2Cu_3O_x$(Bi-2223) powders were synthesized by ultrasonic spray pyrolysis method. It is clear that Bi-2223 phase more than Bi-2212 phase was acquired at sufficient synthesized time. Best condition for Bi-2223 phase was synthesizing temperature at $860^{\circ}C$. We also investigated the effects for concentrations and viscosities of starting liquid precursor as well as temperature distribution of reacting furnace. The size of synthesized powder was decreased by decreasing the concentration of starting liquid precursor. Modified reacting furnace with four different temperature heating zones gave us successful results for desirable nano-powder including $Bi_2Sr_2Ca_2Cu_3O_x$ phase. Citric acid addition to starting liquid precursor showed increasing of the size for synthesized powder. Bi-2223 single phase was acquired from Bi2223 and Bi-2212 mixed phases through heat treatment in box furnace at 24 hours.

Thermo-Degradation Kinetics of Polyethylene (폴리에틸렌의 열분해 Kinetics)

  • Cha, Wang Seog
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.432-437
    • /
    • 1999
  • Pyrolysis of polyethylene was carried out in the stainless steel reactor of internal volume of $10cm^3$. Pyrolysis reactions were performed at temperature $390{\sim}450^{\circ}C$ and the pyrolysis products were collected separately as reaction products and gas products. The molecular weight distributions(MWDs) of each product were determined by HPLC-GPC and GC analysis. Distribution balance equation for MWDs of random and specific products were proposed to account for initiation-termination and propagation-depropagation, such as hydrogen abstraction, chain cleavage, coupling of polymer and radical. A separate chain-end scission process produces low molecular weight noncondensable gases(C1 through C5) of average molecular weight 38. Activation energies of the random-chain scission and chain-end scission rate parameters, respectively, were determined to be 35, 17 kcal/mole.

  • PDF

Estimation of Pyrolysis Properties for Fire Propagation Analysis of Furniture Materials (가구소재의 화재전파해석을 위한 열해리 물성 평가)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.27 no.4
    • /
    • pp.41-46
    • /
    • 2013
  • The present study has been conducted to investigate the reaction kinetics and pyrolysis parameters for flame propagation analysis of furniture material components. TGA measurement for component materials such as MDF (medium density fiberboad) panel including coating material, synthetic leather and foam cushion are performed under maximum temperature of $600^{\circ}C$ and heating rate of $10^{\circ}C/min$. The results of TGA have shown that the peak temperature of MDF panel was $324^{\circ}C$ and the initial peak temperature of coating material decreased by $270{\sim}280^{\circ}C$. In the case of synthetic leather and foam materials, the reference temperature and reference rate depend on the type of polymer consisting the sample, the initial kinetic characteristics was classified into 2 categories of about $270^{\circ}C$ and $420^{\circ}C$ of reference temperature for the tested synthetic materials. The present study showed the pyrolysis parameters of reference temperature and reference rate proposed by Lyon to evaluate the pre-exponential factor and activation energy. The present study can contribute to improve the reliability of computational fire analysis and enhance the understanding of fire propagation phenomena based on the thermal properties study of material.

Research on Pyrolysis Properties of Waste Plastic Films (폐플라스틱 필름의 열분해특성에 대한 연구)

  • Kim, Young-Min;Lee, Boram;Han, Tae Uk;Kim, Seungdo;Yu, Tae-U;Bang, Byoung Yeol;Kim, Joug-Su;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.23-28
    • /
    • 2017
  • Pyrolysis characteristics of waste plastic films were investigated by using a thermogravimetric analysis and pyrolyzer-gas chromatography/mass spectrometry. Thermogravimetric analysis results revealed that the pyrolysis of waste plastic films can be divided into two distinct reactions; (1) the decomposition reaction of starch at between 200 and $370^{\circ}C$ and (2) that of other plastic polymers such as PS, PP, PE at between 370 and $510^{\circ}C$. The kinetic analysis results obtained by using the revised Ozawa method indicated that the apparent activation energy of the pyrolysis reaction of waste plastic films was also changed dramatically according to the different decomposition reactions of two major waste plastic film components. Py-GC/MS results also revealed that the typical pyrolyzates of each polymer in waste plastic films were levoglucosan (starch), terephthalic acid (PET), styrene monomer, dimer, and trimer (PS), methylated alkenes (PP), and triplet peaks (PE) composed of alkadiene/alkene/alkane. The phthalate, used as a polymer additive, was also detected on the pyrogram of waste plastic films mixture.

Waste coffee grounds-derived nanoporous carbon nanosheets for supercapacitors

  • Park, Min Hong;Yun, Young Soo;Cho, Se Youn;Kim, Na Rae;Jin, Hyoung-Joon
    • Carbon letters
    • /
    • v.19
    • /
    • pp.66-71
    • /
    • 2016
  • The development of nanostructured functional materials derived from biomass and/or waste is of growing importance for creating sustainable energy-storage systems. In this study, nanoporous carbonaceous materials containing numerous heteroatoms were fabricated from waste coffee grounds using a top-down process via simple heating with KOH. The nanoporous carbon nanosheets exhibited notable material properties such as high specific surface area (1960.1 m2 g−1), numerous redox-active heteroatoms (16.1 at% oxygen, 2.7 at% nitrogen, and 1.6 at% sulfur), and high aspect ratios (>100). These unique properties led to good electrochemical performance as supercapacitor electrodes. A specific capacitance of ~438.5 F g−1 was achieved at a scan rate of 2 mV s−1, and a capacitance of 176 F g−1 was maintained at a fast scan rate of 100 mV s−1. Furthermore, cyclic stability was achieved for over 2000 cycles.

Effects of Zeolites on Thermal Stability of Poly(vinyl chloride) (폴리염화비닐(PVC)의 열안정성에 제올라이트가 미치는 영향)

  • Xu, Jiayou;Liang, Qinghua;Xian, Xiumei;Li, Kaidan;Liu, Jie
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • The effects of zeolite on the thermal stability of poly(vinyl chloride) (PVC) were investigated by the static thermal stability test, pyrolysis experiment and ultraviolet spectrum. The results showed that the porous zeolite could absorb hydrogen chloride (HCl), which suppressed the catalysis of HCl on thermal degradation of PVC, thus improved the thermal stability of PVC. The oxidizing acid which was loaded on zeolite had oxidated on the double bond that formed during the dehydrochlorination of PVC. This process could prohibit the growth of the conjugated polyene and improved the color of PVC. Hence, zeolite might be possible to come up with a high performance thermal stabilizer.

수송기계 엔진 MEMS 용 SiCN 마이크로 구조물 제작

  • Jeong, Jun-Ho;Jeong, Gwi-Sang
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.10a
    • /
    • pp.14-17
    • /
    • 2006
  • This paper describes a novel processing technique for fabrication of polymer-derived SiCN (silicone carbonitride) microstructures for super-temperature MEMS applications. PDMS (polydimethylsiloxane) mold is fabricated on SU-8 photoresist using standard UV photolithographic process. Liquid precursor is injected into the PDMS mold. Finally, solid polymer structure is cross-linked using HIP (hot isostatic pressure) at $400^{\circ}C$, 205 bar Optimum pyrolysis and anneal ins conditions are determined to form a ceramic microstructure capable of withstanding over $1400^{\circ}C$. The fabricated SiCN ceramic microstructure has excel lent characteristics, such as shear strength (15.2 N), insulation resistance ($2.163{\times}10^{14}\;{\Omega}$) and BDV (min. 1.2 kV) under optimum process condition.

  • PDF

Ceramic Foams by the Self-Blowing of Polymer (고분자의 자체발포를 이용한 세라믹 다공질체)

  • 백종원;김득중
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.555-559
    • /
    • 2004
  • Ceramic foams were prepared by a self-blowing process of a polysiloxane with A1$_2$O$_3$ as a filler. The release of water and ethanol vapor during the condensation reaction of the polymer triggered the pores in the polymer melt. The size. interconnectivity and shape of the pores in the ceramic foams were strongly dependent on the viscosity of the polymer melt, which could be varied by the content and size oi the filler. When the content of the filler inceased and the size of the filler decreased. the size of the pores were decreased and the thickness between the pores were increased. In the addition, the viscosity of polymer melt increased by the pretreatment at 130$^{\circ}C$ for Ire intermolecular cross linking thereby stabilizing the foam structure. The density and compressive strength of the ceramic foams were affected by the heating rate during the blowing process.

Preparation of Smectic Layered Polymer Networks Using Side Chain Liquid Crystalline Polymers Having Latent Reactive Monomeric Units

  • Oh, Young-Taek;Kim, Woo-Jin;Seo, Sang-Hyuk;Chang, Ji-Young
    • Macromolecular Research
    • /
    • v.17 no.2
    • /
    • pp.84-90
    • /
    • 2009
  • We prepared side-chain liquid crystalline polymers comprising two monomeric units, one having a mesogenic side group that could form a smectic mesophase and the other having a phenolic group attached to the polymer backbone via a thermally reversible urethane bond. The urethane linkage between the isocyanate and phenol groups was stable at room temperature, but it cleaved to generate an isocyanate group when the temperature was increased. When annealed, the copolymers in their smectic mesophases became insoluble in common organic solvents, suggesting the formation of network structures. XRD analysis showed that the annealed polymers maintained their smectic LC structures. The crosslinking process probably proceeded via the reaction of the dissociated isocyanate groups. Some of the isocyanate groups would have first reacted with moisture in the atmosphere to yield amino groups, which underwent further reaction with other isocyanate groups, resulting in the formation of urea bonds. We presume that only polymer chains in the same layer were crosslinked by the reaction of the isocyanate groups, resulting in the formation of a layered polymer network structure. Reactions between the layers did not occur because of the wide layer spacing.