Browse > Article
http://dx.doi.org/10.9713/kcer.2019.57.4.547

Electrochemical Performance of High-Voltage LiMn0.8Fe0.2PO4 Cathode with Polyacrylonitrile (PAN)-Based Gel Polymer Electrolyte  

Kwon, O. Hyeon (Department of Solar & Energy Engineering, Cheongju University)
Kim, Jae-Kwang (Department of Solar & Energy Engineering, Cheongju University)
Publication Information
Korean Chemical Engineering Research / v.57, no.4, 2019 , pp. 547-552 More about this Journal
Abstract
Electrochemical properties of $LiMn_{0.8}Fe_{0.2}PO_4$ cathode were investigated with gel polymer electrolyte (GPE). To access fast and efficient transport of ions and electrons during the charge/discharge process, a pure and well-crystallized $LiMn_{0.8}Fe_{0.2}PO_4$ cathode material was directly synthesized via spray-pyrolysis method. For high operation voltage, polyacrylonitrile (PAN)-based gel polymer electrolyte was then prepared by electrospinning process. The gel polymer electrolyte showed high ionic conductivity of $2.9{\times}10^{-3}S\;cm^{-1}$ at $25^{\circ}C$ and good electrochemical stability. $Li/GEP/LiMn_{0.8}Fe_{0.2}PO_4$ cell delivered a discharge capacity of $159mAh\;g^{-1}$ at 0.1 C rate that was close to the theoretical value ($170mAh\;g^{-1}$). The cell allows stable cycle performance (99.3% capacity retention) with discharge capacity of $133.5mAh\;g^{-1}$ for over 300 cycles at 1 C rate and exhibits high rate-capability. PAN-based gel polymer is a suitable electrolyte for application in $LiMn_{0.8}Fe_{0.2}PO_4/Li$ batteries with perspective in high energy density and safety.
Keywords
$LiMn_{0.8}Fe_{0.2}PO_4$; Polyacrylonitrile; High potential; Electrochemical performance; Lithium ion battery;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Yamada, A., Kudo, Y. and Liu, K. Y., "Phase Diagram of $Lix(Mn_yFe_{1-y})PO_4$ ($0{\leq}x, y{\leq}1$)," J. Electrochemical Society, 148(10), A1153-A1158(2001).   DOI
2 Yamada, A. and Chung, S. C., "Crystal Chemistry of the Olivine- Type Li $(Mn_yFe_{1-y})PO_4$ and $(Mn_yFe_{1-y})PO_4$ as Possible 4 V Cathode Materials for Lithium Batteries," J. Electrochemical Society, 148(8), A960-A967(2001).   DOI
3 Abbrent, S., Plestil, J., Hlavata, D., Lindgren, J., Tegenfeldt, J. and Wendsjo, A. "Crystallinity and Morphology of PVdF-HFP-based Gel Electrolytes," Polymer, 42(4), 1407-1416(2001).   DOI
4 Huang, B., Wang, Z., Chen, L., Xue, R. and Wang, F., "The Mechanism of Lithium Ion Transport in Polyacrylonitrile-based Polymer Electrolytes," Solid State Ionics, 91(3-4), 279-284(1996).   DOI
5 Raghavan, P., Manuel, J., Zhao, X., Kim, D. S., Ahn, J. H. and Nah, C., "Preparation and Electrochemical Characterization of Gel Polymer Electrolyte based on Electrospun Polyacrylonitrile Nonwoven Membranes for Lithium Batteries," J. Power Sources, 196(16), 6742-6749(2011).   DOI
6 Tsutsumi, H., Matsuo, A., Takase, K., Doi, S., Hisanaga, A., Onimura, K. and Oishi, T., "Conductivity Enhancement of Polyacrylonitrile- based Electrolytes by Addition of Cascade Nitrile Compounds," J. Power Sources, 90(1), 33-38(2000).   DOI
7 Jo, M. S., Ghosh,S., Jeong, S. M., Kang, Y. C. and Cho, J. S., "Coral-Like Yolk-Shell-Structured Nickel Oxide/Carbon Composite Microspheres for High-Performance Li-Ion Storage Anodes," Nano-Micro Lett., 11(1), 1-18(2019).   DOI
8 Oh, S. H., Kim, J. K., Kang, Y. C. and Cho, J. S., "Three-Dimensionally Ordered Mesoporous Multicomponent (Ni, Mo) Metal Oxide/ N-doped Carbon Composite with Superior Li-Ion Storage Performance," Nanoscale, 10(39), 18734-18741(2018).   DOI
9 Jeon, D. M., Na, B. K. and Rhee, Y. Woo., "Electrochemical Characteristics of Si/PC/CNF/PC Composite for Anode Material of Lithium ion Battery," Korean Chem. Eng. Res., 56(6), 798-803(2018).
10 Fan, Z. Yu., Jin, E. M. and Jeong, S. M., "Enhanced Electrochemical Properties of NCA Cathode Materials for Lithium Ion Battery by Doping Effect," Korean Chem. Eng. Res., 55(6), 861-867(2017).   DOI
11 Lim, J.-E. and Kim, J.-K., "Optimization of Electrolyte and Carbon Conductor for Dilithium Terephthalate Organic Batteries," Korean J. Chem. Eng., 35(12), 2464-2467(2018).   DOI
12 Raghavan, P., Choi, J. W., Ahn, J. H., Cheruvally, G., Chauhan, G. S., Ahn, H. J. and Nah, C., "Novel Electrospun Poly(vinylidene fluoride-co-hexafluoropropylene)-in situ $SiO_2$ Composite Membrane- based Polymer Electrolyte for Lithium Batteries," J. Power Sources, 184(2), 437-443(2008).   DOI
13 Chung, S. Y., Bloking, J. T. and Chiang, Y. M., "Electronically Conductive Phospho-olivines as Lithium Storage Electrodes," Nature Materials, 1(2), 123-128(2002).   DOI
14 Huang, Y. H. and Goodenough, J. B., "High-rate $LiFePO_4$ Lithium Rechargeable Battery Promoted by Electrochemically Active Polymers," Chemistry of Materials, 20(23), 7237-7241(2008).   DOI
15 Kang, B. and Ceder, G., "Battery Materials for Ultrafast Charging and Discharging," Nature, 458(7235), 190-193(2009).   DOI
16 Ko, H. S., Park, H. W., Kim, G. J. and Lee, J. D., "Electrochemical Characteristics of Lithium-Excess Cathode Material $(Li_{1+x}Ni_{0.9}Co_{0.05}Ti_{0.05}O_2)$ for Lithium-Ion Batteries," Korean J. Chem. Eng., 36(4), 620-624(2019).   DOI
17 Wang, Y., He, P. and Zhou, H., "Olivine $LiFePO_4$: Development and Future," Energy Environ. Sci., 4(3), 805-817(2011).   DOI
18 Min, H. S., Ko, J. M. and Kim, D. W., "Preparation and Characterization of Porous Polyacrylonitrile Membranes for Lithium-ion Polymer Batteries," J. Power Sources, 119, 469-472(2003).   DOI
19 Abraham, K. M., Jiang, Z. and Carroll, B., "Highly Conductive PEO-like Polymer Electrolytes," Chemistry of Materials, 9(9), 1978-1988(1997).   DOI
20 Watanabe, M., Sanui, K., Ogata, N., Kobayashi, T. and Ohtaki, Z., "Ionic Conductivity and Mobility in Network Polymers from Poly(propylene oxide) Containing Lithium Perchlorate," J. Applied Physics, 57(1), 123-128(1985).   DOI
21 Bakenov, Z. and Taniguchi, I., "Physical and Electrochemical Properties of $LiMnPO_4$/C Composite Cathode Prepared with Different Conductive Carbons," J. Power Sources, 195(21), 7445-7451 (2010).   DOI
22 Roberts, M. R., Vitins, G., Denuault, G. and Owen, J. R., "High Throughput Electrochemical Observation of Structural Phase Changes in $LiFe_{1-x}Mn_xPO_4$ during Charge and Discharge," J. Electrochemical Society, 157(4), A381-A386(2010).   DOI
23 Tarascon, J. M. and Armand, M., "Issues and Challenges Facing Rechargeable Lithium Batteries," Nature, 414, 359-367(2001).   DOI
24 Zane, D., Carewska, M., Scaccia, S., Cardellini, F. and Prosini, P. P., "Factor Affecting Rate Performance of Undoped $LiFePO_4$," Electrochimica Acta, 49(25), 4259-4271(2004).   DOI
25 Wang, L., Zhou, F. and Ceder, G., "Ab Initio Study of the Surface Properties and Nanoscale Effects of $LiMnPO_4$," Electrochemical and Solid-State Letters, 11(6), A94-A96(2008).
26 Drezen, T., Kwon, N. H., Bowen, P., Teerlinck, I., Isono, M. and Exnar, I., "Effect of Particle Size on $LiMnPO_4$ Cathodes," J. Power Sources, 174(2), 949-953(2007).   DOI
27 Martha, S. K., Markovsky, B., Grinblat, J., Gofer, Y., Haik, O., Zinigrad, E. and Exnar, I., "$LiMnPO_4$ as an Advanced Cathode Material for Rechargeable Lithium Batteries," J. Electrochemical Society, 156(7), A541-A552(2009).   DOI
28 Choi, D., Wang, D., Bae, I. T., Xiao, J., Nie, Z., Wang, W. and Yang, Z., "$LiMnPO_4$ Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon for Li-ion Battery Cathode," Nano Letters, 10(8), 2799-2805(2010).   DOI
29 Kang, B. and Ceder, G., "Electrochemical Performance of $LiMnPO_4$ Synthesized with Off-Stoichiometry," J. Electrochemical Society, 157(7), A808-A811(2010).   DOI
30 Yonemura, M., Yamada, A., Takei, Y., Sonoyama, N. and Kanno, R., "Comparative Kinetic Study of Olivine $Li_xMPO_4$ (M = Fe, Mn)," J. Electrochemical Society, 151(9), A1352-A1356(2004).   DOI
31 Hong, J., Wang, F., Wang, X. and Graetz, J., "$LiFexMn_{1-x}PO_4$: A Cathode for Lithium-ion Batteries," J. Power Sources, 196(7), 3659-3663(2011).   DOI
32 Zhou, F., Cococcioni, M., Marianetti, C. A., Morgan, D. and Ceder, G., "First-Principles Prediction of Redox Potentials in Transition- metal Compounds with LDA+ U," Physical Review B, 70(23), 235121(2004).   DOI
33 Yamada, A., Hosoya, M., Chung, S. C., Kudo, Y., Hinokuma, K., Liu, K. Y. and Nishi, Y., "Olivine-type Cathodes: Achievements and Problems," J. Power Sources, 119-121, 232-238(2003).   DOI
34 Yan, S. Y., Wang, C. Y., Gu, R. M., Sun, S. and Li, M. W., "Synergetic Fe Substitution and Carbon Connection in $LiMn_{1-x}FexPO_4$/C Cathode Materials for Enhanced Electrochemical Performances," J. Alloys and Compounds, 628, 471-479(2015).   DOI
35 Li, G., Azuma, H. and Tohda, M., "Optimized $LiMn_yFe_{1-y}PO_4$ as the Cathode for Lithium Batteries," J. Electrochemical Society, 149(6), A743-A747(2002).   DOI
36 Mi, C. H., Zhang, X. G., Zhao, X. B. and Li, H. L., "Synthesis and Performance of $LiMn-{0.6}Fe_{0.4}PO_4$/nano-carbon Webs Composite Cathode," Materials Science and Engineering: B, 129(1-3), 8-13(2006).   DOI
37 Hu, C., Yi, H., Fang, H., Yang, B., Yao, Y., Ma, W. and Dai, Y., "Improving the Electrochemical Activity of $LiMnPO_4$ via Mn-site Co-substitution with Fe and Mg," Electrochemistry Communications, 12(12), 1784-1787(2010).   DOI
38 Kim, J. K., Hwang, G. C., Kim, S. H. and Ahn, J. H., "Comparison of the Structural and Electrochemical Properties of $LiMn-{0.4}Fe_{0.6}PO_4$ Cathode Materials with Different Synthetic Routes," J. Industrial and Engineering Chemistry, 66, 94-99(2018).   DOI