DOI QR코드

DOI QR Code

Electrochemical Performance of High-Voltage LiMn0.8Fe0.2PO4 Cathode with Polyacrylonitrile (PAN)-Based Gel Polymer Electrolyte

  • Kwon, O. Hyeon (Department of Solar & Energy Engineering, Cheongju University) ;
  • Kim, Jae-Kwang (Department of Solar & Energy Engineering, Cheongju University)
  • Received : 2019.07.04
  • Accepted : 2019.07.11
  • Published : 2019.08.01

Abstract

Electrochemical properties of $LiMn_{0.8}Fe_{0.2}PO_4$ cathode were investigated with gel polymer electrolyte (GPE). To access fast and efficient transport of ions and electrons during the charge/discharge process, a pure and well-crystallized $LiMn_{0.8}Fe_{0.2}PO_4$ cathode material was directly synthesized via spray-pyrolysis method. For high operation voltage, polyacrylonitrile (PAN)-based gel polymer electrolyte was then prepared by electrospinning process. The gel polymer electrolyte showed high ionic conductivity of $2.9{\times}10^{-3}S\;cm^{-1}$ at $25^{\circ}C$ and good electrochemical stability. $Li/GEP/LiMn_{0.8}Fe_{0.2}PO_4$ cell delivered a discharge capacity of $159mAh\;g^{-1}$ at 0.1 C rate that was close to the theoretical value ($170mAh\;g^{-1}$). The cell allows stable cycle performance (99.3% capacity retention) with discharge capacity of $133.5mAh\;g^{-1}$ for over 300 cycles at 1 C rate and exhibits high rate-capability. PAN-based gel polymer is a suitable electrolyte for application in $LiMn_{0.8}Fe_{0.2}PO_4/Li$ batteries with perspective in high energy density and safety.

Keywords

HHGHHL_2019_v57n4_547_f0001.png 이미지

Fig. 1. XRD patterns of standard LiFePO4, LiMnPO4 and prepared LiMn0.8Fe0.2PO4.

HHGHHL_2019_v57n4_547_f0002.png 이미지

Fig. 2. SEM images (a) and EDX images (b) of LMFP microspherical powders.

HHGHHL_2019_v57n4_547_f0003.png 이미지

Fig. 3. SEM images of electrospun PAN membrane (a) and gel polymer electrolyte (b), electrochemical impedance spectroscopy (c) and LSV (d) of gel polymer electrolyte.

HHGHHL_2019_v57n4_547_f0004.png 이미지

Fig. 4. Uptake analysis of electrospun PAN membrane.

HHGHHL_2019_v57n4_547_f0005.png 이미지

Fig. 5. Cyclic voltammetry of LiFePO4 and LMFP cells.

HHGHHL_2019_v57n4_547_f0006.png 이미지

Fig. 6. Charge-discharge profiles (a), rate-capability (b) and cycle performance Li/GPE/LMFP cells.

Table 1. Unit cell parameters of LiFePO4, LiMnPO4 and prepared LiMn0.8Fe0.2PO4

HHGHHL_2019_v57n4_547_t0001.png 이미지

References

  1. Jeon, D. M., Na, B. K. and Rhee, Y. Woo., "Electrochemical Characteristics of Si/PC/CNF/PC Composite for Anode Material of Lithium ion Battery," Korean Chem. Eng. Res., 56(6), 798-803(2018).
  2. Fan, Z. Yu., Jin, E. M. and Jeong, S. M., "Enhanced Electrochemical Properties of NCA Cathode Materials for Lithium Ion Battery by Doping Effect," Korean Chem. Eng. Res., 55(6), 861-867(2017). https://doi.org/10.9713/kcer.2017.55.6.861
  3. Lim, J.-E. and Kim, J.-K., "Optimization of Electrolyte and Carbon Conductor for Dilithium Terephthalate Organic Batteries," Korean J. Chem. Eng., 35(12), 2464-2467(2018). https://doi.org/10.1007/s11814-018-0152-3
  4. Chung, S. Y., Bloking, J. T. and Chiang, Y. M., "Electronically Conductive Phospho-olivines as Lithium Storage Electrodes," Nature Materials, 1(2), 123-128(2002). https://doi.org/10.1038/nmat732
  5. Huang, Y. H. and Goodenough, J. B., "High-rate $LiFePO_4$ Lithium Rechargeable Battery Promoted by Electrochemically Active Polymers," Chemistry of Materials, 20(23), 7237-7241(2008). https://doi.org/10.1021/cm8012304
  6. Kang, B. and Ceder, G., "Battery Materials for Ultrafast Charging and Discharging," Nature, 458(7235), 190-193(2009). https://doi.org/10.1038/nature07853
  7. Tarascon, J. M. and Armand, M., "Issues and Challenges Facing Rechargeable Lithium Batteries," Nature, 414, 359-367(2001). https://doi.org/10.1038/35104644
  8. Zane, D., Carewska, M., Scaccia, S., Cardellini, F. and Prosini, P. P., "Factor Affecting Rate Performance of Undoped $LiFePO_4$," Electrochimica Acta, 49(25), 4259-4271(2004). https://doi.org/10.1016/j.electacta.2004.04.022
  9. Wang, L., Zhou, F. and Ceder, G., "Ab Initio Study of the Surface Properties and Nanoscale Effects of $LiMnPO_4$," Electrochemical and Solid-State Letters, 11(6), A94-A96(2008).
  10. Drezen, T., Kwon, N. H., Bowen, P., Teerlinck, I., Isono, M. and Exnar, I., "Effect of Particle Size on $LiMnPO_4$ Cathodes," J. Power Sources, 174(2), 949-953(2007). https://doi.org/10.1016/j.jpowsour.2007.06.203
  11. Martha, S. K., Markovsky, B., Grinblat, J., Gofer, Y., Haik, O., Zinigrad, E. and Exnar, I., "$LiMnPO_4$ as an Advanced Cathode Material for Rechargeable Lithium Batteries," J. Electrochemical Society, 156(7), A541-A552(2009). https://doi.org/10.1149/1.3125765
  12. Choi, D., Wang, D., Bae, I. T., Xiao, J., Nie, Z., Wang, W. and Yang, Z., "$LiMnPO_4$ Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon for Li-ion Battery Cathode," Nano Letters, 10(8), 2799-2805(2010). https://doi.org/10.1021/nl1007085
  13. Bakenov, Z. and Taniguchi, I., "Physical and Electrochemical Properties of $LiMnPO_4$/C Composite Cathode Prepared with Different Conductive Carbons," J. Power Sources, 195(21), 7445-7451 (2010). https://doi.org/10.1016/j.jpowsour.2010.05.023
  14. Kang, B. and Ceder, G., "Electrochemical Performance of $LiMnPO_4$ Synthesized with Off-Stoichiometry," J. Electrochemical Society, 157(7), A808-A811(2010). https://doi.org/10.1149/1.3428454
  15. Yonemura, M., Yamada, A., Takei, Y., Sonoyama, N. and Kanno, R., "Comparative Kinetic Study of Olivine $Li_xMPO_4$ (M = Fe, Mn)," J. Electrochemical Society, 151(9), A1352-A1356(2004). https://doi.org/10.1149/1.1773731
  16. Zhou, F., Cococcioni, M., Marianetti, C. A., Morgan, D. and Ceder, G., "First-Principles Prediction of Redox Potentials in Transition- metal Compounds with LDA+ U," Physical Review B, 70(23), 235121(2004). https://doi.org/10.1103/PhysRevB.70.235121
  17. Yamada, A., Hosoya, M., Chung, S. C., Kudo, Y., Hinokuma, K., Liu, K. Y. and Nishi, Y., "Olivine-type Cathodes: Achievements and Problems," J. Power Sources, 119-121, 232-238(2003). https://doi.org/10.1016/S0378-7753(03)00239-8
  18. Yan, S. Y., Wang, C. Y., Gu, R. M., Sun, S. and Li, M. W., "Synergetic Fe Substitution and Carbon Connection in $LiMn_{1-x}FexPO_4$/C Cathode Materials for Enhanced Electrochemical Performances," J. Alloys and Compounds, 628, 471-479(2015). https://doi.org/10.1016/j.jallcom.2014.12.182
  19. Li, G., Azuma, H. and Tohda, M., "Optimized $LiMn_yFe_{1-y}PO_4$ as the Cathode for Lithium Batteries," J. Electrochemical Society, 149(6), A743-A747(2002). https://doi.org/10.1149/1.1473776
  20. Mi, C. H., Zhang, X. G., Zhao, X. B. and Li, H. L., "Synthesis and Performance of $LiMn-{0.6}Fe_{0.4}PO_4$/nano-carbon Webs Composite Cathode," Materials Science and Engineering: B, 129(1-3), 8-13(2006). https://doi.org/10.1016/j.mseb.2005.11.015
  21. Hong, J., Wang, F., Wang, X. and Graetz, J., "$LiFexMn_{1-x}PO_4$: A Cathode for Lithium-ion Batteries," J. Power Sources, 196(7), 3659-3663(2011). https://doi.org/10.1016/j.jpowsour.2010.12.045
  22. Hu, C., Yi, H., Fang, H., Yang, B., Yao, Y., Ma, W. and Dai, Y., "Improving the Electrochemical Activity of $LiMnPO_4$ via Mn-site Co-substitution with Fe and Mg," Electrochemistry Communications, 12(12), 1784-1787(2010). https://doi.org/10.1016/j.elecom.2010.10.024
  23. Kim, J. K., Hwang, G. C., Kim, S. H. and Ahn, J. H., "Comparison of the Structural and Electrochemical Properties of $LiMn-{0.4}Fe_{0.6}PO_4$ Cathode Materials with Different Synthetic Routes," J. Industrial and Engineering Chemistry, 66, 94-99(2018). https://doi.org/10.1016/j.jiec.2018.05.017
  24. Yamada, A., Kudo, Y. and Liu, K. Y., "Phase Diagram of $Lix(Mn_yFe_{1-y})PO_4$ ($0{\leq}x, y{\leq}1$)," J. Electrochemical Society, 148(10), A1153-A1158(2001). https://doi.org/10.1149/1.1401083
  25. Yamada, A. and Chung, S. C., "Crystal Chemistry of the Olivine- Type Li $(Mn_yFe_{1-y})PO_4$ and $(Mn_yFe_{1-y})PO_4$ as Possible 4 V Cathode Materials for Lithium Batteries," J. Electrochemical Society, 148(8), A960-A967(2001). https://doi.org/10.1149/1.1385377
  26. Abbrent, S., Plestil, J., Hlavata, D., Lindgren, J., Tegenfeldt, J. and Wendsjo, A. "Crystallinity and Morphology of PVdF-HFP-based Gel Electrolytes," Polymer, 42(4), 1407-1416(2001). https://doi.org/10.1016/S0032-3861(00)00517-6
  27. Huang, B., Wang, Z., Chen, L., Xue, R. and Wang, F., "The Mechanism of Lithium Ion Transport in Polyacrylonitrile-based Polymer Electrolytes," Solid State Ionics, 91(3-4), 279-284(1996). https://doi.org/10.1016/S0167-2738(96)00445-6
  28. Raghavan, P., Manuel, J., Zhao, X., Kim, D. S., Ahn, J. H. and Nah, C., "Preparation and Electrochemical Characterization of Gel Polymer Electrolyte based on Electrospun Polyacrylonitrile Nonwoven Membranes for Lithium Batteries," J. Power Sources, 196(16), 6742-6749(2011). https://doi.org/10.1016/j.jpowsour.2010.10.089
  29. Tsutsumi, H., Matsuo, A., Takase, K., Doi, S., Hisanaga, A., Onimura, K. and Oishi, T., "Conductivity Enhancement of Polyacrylonitrile- based Electrolytes by Addition of Cascade Nitrile Compounds," J. Power Sources, 90(1), 33-38(2000). https://doi.org/10.1016/S0378-7753(00)00444-4
  30. Jo, M. S., Ghosh,S., Jeong, S. M., Kang, Y. C. and Cho, J. S., "Coral-Like Yolk-Shell-Structured Nickel Oxide/Carbon Composite Microspheres for High-Performance Li-Ion Storage Anodes," Nano-Micro Lett., 11(1), 1-18(2019). https://doi.org/10.1007/s40820-018-0235-z
  31. Oh, S. H., Kim, J. K., Kang, Y. C. and Cho, J. S., "Three-Dimensionally Ordered Mesoporous Multicomponent (Ni, Mo) Metal Oxide/ N-doped Carbon Composite with Superior Li-Ion Storage Performance," Nanoscale, 10(39), 18734-18741(2018). https://doi.org/10.1039/C8NR06727A
  32. Ko, H. S., Park, H. W., Kim, G. J. and Lee, J. D., "Electrochemical Characteristics of Lithium-Excess Cathode Material $(Li_{1+x}Ni_{0.9}Co_{0.05}Ti_{0.05}O_2)$ for Lithium-Ion Batteries," Korean J. Chem. Eng., 36(4), 620-624(2019). https://doi.org/10.1007/s11814-019-0248-4
  33. Wang, Y., He, P. and Zhou, H., "Olivine $LiFePO_4$: Development and Future," Energy Environ. Sci., 4(3), 805-817(2011). https://doi.org/10.1039/C0EE00176G
  34. Raghavan, P., Choi, J. W., Ahn, J. H., Cheruvally, G., Chauhan, G. S., Ahn, H. J. and Nah, C., "Novel Electrospun Poly(vinylidene fluoride-co-hexafluoropropylene)-in situ $SiO_2$ Composite Membrane- based Polymer Electrolyte for Lithium Batteries," J. Power Sources, 184(2), 437-443(2008). https://doi.org/10.1016/j.jpowsour.2008.03.027
  35. Min, H. S., Ko, J. M. and Kim, D. W., "Preparation and Characterization of Porous Polyacrylonitrile Membranes for Lithium-ion Polymer Batteries," J. Power Sources, 119, 469-472(2003). https://doi.org/10.1016/S0378-7753(03)00206-4
  36. Abraham, K. M., Jiang, Z. and Carroll, B., "Highly Conductive PEO-like Polymer Electrolytes," Chemistry of Materials, 9(9), 1978-1988(1997). https://doi.org/10.1021/cm970075a
  37. Watanabe, M., Sanui, K., Ogata, N., Kobayashi, T. and Ohtaki, Z., "Ionic Conductivity and Mobility in Network Polymers from Poly(propylene oxide) Containing Lithium Perchlorate," J. Applied Physics, 57(1), 123-128(1985). https://doi.org/10.1063/1.335386
  38. Roberts, M. R., Vitins, G., Denuault, G. and Owen, J. R., "High Throughput Electrochemical Observation of Structural Phase Changes in $LiFe_{1-x}Mn_xPO_4$ during Charge and Discharge," J. Electrochemical Society, 157(4), A381-A386(2010). https://doi.org/10.1149/1.3294564