Preparation of Smectic Layered Polymer Networks Using Side Chain Liquid Crystalline Polymers Having Latent Reactive Monomeric Units

  • Oh, Young-Taek (Department of Materials Science and Engineering, and Hyperstructured Organic Materials Research Center, College of Engineering, Seoul National University) ;
  • Kim, Woo-Jin (Department of Materials Science and Engineering, and Hyperstructured Organic Materials Research Center, College of Engineering, Seoul National University) ;
  • Seo, Sang-Hyuk (Department of Materials Science and Engineering, and Hyperstructured Organic Materials Research Center, College of Engineering, Seoul National University) ;
  • Chang, Ji-Young (Department of Materials Science and Engineering, and Hyperstructured Organic Materials Research Center, College of Engineering, Seoul National University)
  • Published : 2009.02.25

Abstract

We prepared side-chain liquid crystalline polymers comprising two monomeric units, one having a mesogenic side group that could form a smectic mesophase and the other having a phenolic group attached to the polymer backbone via a thermally reversible urethane bond. The urethane linkage between the isocyanate and phenol groups was stable at room temperature, but it cleaved to generate an isocyanate group when the temperature was increased. When annealed, the copolymers in their smectic mesophases became insoluble in common organic solvents, suggesting the formation of network structures. XRD analysis showed that the annealed polymers maintained their smectic LC structures. The crosslinking process probably proceeded via the reaction of the dissociated isocyanate groups. Some of the isocyanate groups would have first reacted with moisture in the atmosphere to yield amino groups, which underwent further reaction with other isocyanate groups, resulting in the formation of urea bonds. We presume that only polymer chains in the same layer were crosslinked by the reaction of the isocyanate groups, resulting in the formation of a layered polymer network structure. Reactions between the layers did not occur because of the wide layer spacing.

Keywords

References

  1. D. T. McCormick, K. D. Stovall, and C. A. Guymon, Macromolecules, 36, 6549 (2003) https://doi.org/10.1021/ma030037e
  2. D. J. Broer, J. Lub, and G. N. Mol, Macromolecules, 26, 1244 (1993) https://doi.org/10.1021/ma00058a007
  3. C.-S. Hsu and H.-L. Chen, J. Polym. Sci. Part A: Polym. Chem., 37, 3929 (1999) https://doi.org/10.1002/(SICI)1099-0518(19991101)37:21<3929::AID-POLA8>3.0.CO;2-9
  4. B. C. Baxter and D. L. Gin, Macromolecules, 31, 4419 (1998) https://doi.org/10.1021/ma980079g
  5. D. L. Gin, W. Q. Gu, B. A. Pindzola, and W. J. Zhou, Acc. Chem. Res., 34, 973 (2001) https://doi.org/10.1021/ar000140d
  6. R. A. M. Hikmet, J. Lub, and A. J. W. Tol, Macromolecules, 28, 3313 (1995) https://doi.org/10.1021/ma00113a036
  7. C. D. Favre-Nicolin and J. Lub, Macromolecules, 29, 6143 (1996) https://doi.org/10.1021/ma951818l
  8. R. A. M. Hikmet and J. Lub, Prog. Polym. Sci., 21, 1165 (1996) https://doi.org/10.1016/S0079-6700(96)00017-2
  9. J. Y. Chang, J. R. Yeon, Y. S. Shin, M. J. Han, and S.-K. Hong, Chem. Mat., 12, 1076 (2000) https://doi.org/10.1021/cm990704b
  10. J. Y. Chang, J. H. Baik, C. B. Lee, M. J. Han, and S.-K. Hong, J. Am. Chem. Soc., 119, 3197 (1997) https://doi.org/10.1021/ja961193m
  11. S. W. Nam, S. H. Kang, and J. Y. Chang, Macromol. Res., 15, 74 (2007) https://doi.org/10.1007/BF03218755
  12. J. C. Peter and H. Michael, Introduction to Liquid Crystals Chemistry and Physics, Taylor & Francis Ltd., 1997
  13. B. G. Kim, J. K. Moon, E. H. Sohn, J. C. Lee, and J. K. Yeo, Macromol. Res., 16, 36 (2008)
  14. S. H. Seo, Y. W. Kim, and J. Y. Chang, Macromolecules, 38, 1525 (2005) https://doi.org/10.1021/ma047645u
  15. D. O'Hare, in Inorganic Materials, D. W. Bruce and D. O'Hare, Eds., Wiley & Sons, Chichester, 1996, p 171
  16. G. Wegner, M. M. Demir, M. Faatz, K. Gorna, R. Munoz-Espi, B. Guillemet, and F. Grohn, Macromol. Res., 15, 95 (2007) https://doi.org/10.1007/BF03218759
  17. A. Matsumoto, T. Odani, K. Sada, M. Miyata, and K. Tashiro, Nature, 405, 328 (2000) https://doi.org/10.1038/35012550
  18. C. D. Ki, C. Oh, S.-G. Oh, and J. Y. Chang, J. Am. Chem. Soc., 124, 14838 (2002) https://doi.org/10.1021/ja0277881
  19. V. P. Shibaev and N. A. Plat$\acute{e}$, Adv. Polym. Sci., 60, 173 (1984)
  20. I. I. Konstantinov, A. A. Sitnov, V. S. Grebneva, and Y. B. Amerik, Eur. Polym. J., 19, 327 (1983) https://doi.org/10.1016/0014-3057(83)90168-4
  21. G. Oertel, Polyurethane Handbook, 2nd ed., Hanser Publisher, Munich, 1994
  22. T. Kowalewski, N. V. Tsarevsky, and K. Matyjaszewski, J. Am. Chem. Soc., 124, 10632 (2002) https://doi.org/10.1021/ja0178970
  23. T. Kowalewski, R. D. McCullough, and K. Matyjaszewski, Eur. Phys. J. E., 10, 5 (2003) https://doi.org/10.1140/epje/e2003-00009-x
  24. C. Tang, A. Tracz, M. Kruk, R. Zhang, D. Smilgies, K. Matyjaszewski, and T. Kowalewski, J. Am. Chem. Soc., 127, 6918 (2005) https://doi.org/10.1021/ja0508929
  25. C. Tang, K. Qi, K. L. Wooley, K. Matyjaszewski, and T. Kowalewski, Angew. Chem. Int. Ed., 43, 2783 (2004) https://doi.org/10.1002/anie.200353401
  26. B. J. Kim and J. Y. Chang, Macromolecules, 39, 90 (2006) https://doi.org/10.1021/ma051713a
  27. B. J. Kim, D. K. Oh, and J. Y. Chang, Macromol. Res., 16, 103 (2008) https://doi.org/10.1007/BF03218837