• Title/Summary/Keyword: Polymer pyrolysis

Search Result 116, Processing Time 0.022 seconds

$MoSi_2$/SiC Ceramic Composites Prepared by Polymer Pyrolysis (고분자 열분해에 의한 $MoSi_2$/SiC 세라믹 복합체)

  • 김범섭;김득중;김동표
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.8
    • /
    • pp.805-810
    • /
    • 2000
  • The formation, microstructure and properties of MoSi2/SiC ceramic composites by polymer pyrolysis were investigated for the application of heating element material. Polymethylsiloxanes were mixed with Si, SiC, MoSi2 as filler and ceramic composites prepared by pyrolysis in N2 atmosphere at 1320~145$0^{\circ}C$ were studied. Dimensional change, density variation and phases were analyzed and correlated to the resulting material properties. Microstructures of ceramic composite prepared by polymer pyrolysis were composed of MoSi2, SiC and silicon oxycarbide glass matrix. Depending on the pyrolysis conditions, ceramic composites with a density of 86~90 TD%, a fracture strength of 213~284 MPa, a thermal expansion coefficient of 4~7$\times$10-6 were obtained. The electrical resistivity of the specimen decreased with increasing of temperature up to 50$0^{\circ}C$.

  • PDF

Study on Analysis of Vulcanized Rubber by Pyrolysis-Gas Chromatography(I) (Vulcanizates of NR BR and SBR) (Pyrolysis-Gas Chromatography를 이용한 가황 고무의 열분석에 관한연구(I) (NR, BR 및 SBR의 가황체))

  • Huh, D.S.;Kim, J.S.;Kim, K.J.;Ahn, B.K.;Suh, S.K.;Han, O.K.
    • Elastomers and Composites
    • /
    • v.22 no.1
    • /
    • pp.11-19
    • /
    • 1987
  • A coil pyrolyzer and processor-controlled gas chromatograph were used for analysis of rubber for compounding ratio of the single and blend rubber vlucanizates. Variables such as sample size, pyrolysis temperature, time allowed for pyrolysis, the column packing material, its length and programmable temperature for gas chromatography were examined to obtain optimum condition for application to NR, BR and SBR blends. By application fixed conditions, three kinds of standard curves were finally obtained from thirty samples of blend vulcanizates which were prepared in the pilot plant, NIRI. It is possible to determine rubber composition and their ratio in NR, BR and SBR products by pyrolysis.

  • PDF

On the Pyrolysis of Polymers II. Identification of the Products from Polymer Pyrolysis by Gas Chromatography (高分子物質의 熱分解에 關한 硏究 (第2報) Gas Chromatography 에 依한 熱分解生成物의 檢索)

  • Chwa-Kyung Sung
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.2
    • /
    • pp.106-114
    • /
    • 1963
  • The products from polymer pyrolysis at $450^{\circ}$ are cooled with ice, then liquid and gaseous portions are analysed by gas chromatography. Di-2-ethyl hexyl sebacate column, silicone oil column, silica gel column and tetraethyleneglycol dimethylether column, which was most effective for the separation of hydrocarbon gases, are used. Identification of isomers could be secured more effectively by gas chromatography than mass spectrometry. Elucidation of the mechanism for thermal decomposition of polymers could be done through the identification of pyrolysis products. Although more extensive work is needed, some patterns of polymer pyrolysis are discussed.

  • PDF

Liquefaction Characteristics of HDPE by Pyrolysis (HDPE의 열분해에 의한 액화 특성)

  • 유홍정;이봉희;김대수
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.84-89
    • /
    • 2003
  • Pyrolysis of high density polyethylene(HDPE) was carried out to find the effects of temperature and time on the pyrolysis. The starting temperature and activation energy of HDPE pyrolysis increased with increasing heating rate. In general, conversion and liquid yield continuously increased with pyrolysis temperature and pyrolysis time. This tendency is very sensitive with pyrolysis time, especially at 45$0^{\circ}C$. Pyrolysis temperature has more influence on the conversion than pyrolysis time. Each liquid product formed during pyrolysis was classified into gasoline, kerosene, light oil and wax according to the distillation temperature based on the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. As a result, the amount of liquid products produced during HDPE pyrolysis at 45$0^{\circ}C$ was in the order of light oil > wax > kerosene > gasoline, and at 475$^{\circ}C$ and 50$0^{\circ}C$, it was wax > light > oil > kerosene > gasoline.

Advancements in Polymer-Filler Derived Ceramics

  • Greil, Peter
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.279-286
    • /
    • 2012
  • Microstructure tailoring of filler loaded preceramic polymer systems offers a high potential for property improvement of Si-based ceramics and composites. Advancements in manufacturing of bulk materials by controlling microstructure evolution during thermal induced polymer-ceramic transforma-tion and polymer-filler reactions will be presented. Rate controlled pyrolysis, multilayer gradient laminate design and surface modification by gas solid reaction are demonstrated to yield ceramic components of high fractional density and superior mechanical properties. Emerging fields of applications are presented.

Preparation of photoresist-derived carbon micropatterns by proton ion beam lithography and pyrolysis

  • Nam, Hui-Gyun;Jung, Jin-Mook;Hwang, In-Tae;Shin, Junhwa;Jung, Chang-Hee;Choi, Jae-Hak
    • Carbon letters
    • /
    • v.24
    • /
    • pp.55-61
    • /
    • 2017
  • Carbon micropatterns (CMs) were fabricated from a negative-type SU-8 photoresist by proton ion beam lithography and pyrolysis. Well-defined negative-type SU-8 micropatterns were formed by proton ion beam lithography at the optimized fluence of $1{\times}10^{15}ions\;cm^{-2}$ and then pyrolyzed to form CMs. The crosslinked network structures formed by proton irradiation were converted to pseudo-graphitic structures by pyrolysis. The fabricated CMs showed a good electrical conductivity of $1.58{\times}10^2S\;cm^{-1}$ and a very low surface roughness.

Gas Separation of Pyrolyzed Polymeric Membranes: Effect of Polymer Precursor and Pyrolysis Conditions

  • Jung, Chul-Ho;Kim, Gun-Wook;Han, Sang-Hoon;Lee, Young-Moo
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.565-574
    • /
    • 2007
  • In this study, five representative, commercially available polymers, Ultem 1000 polyetherimide, Kapton polyimide, phenolic resin, polyacrylonitrile and cellulose acetate, were used to prepare pyrolyzed polymer membranes coated on a porous {\alpha}-alumina$ tube via inert pyrolysis for gas separation. Pyrolysis conditions (i.e., final temperature and thermal dwell time) of each polymer were determined using a thermogravimetric method coupled with real-time mass spectroscopy. The surface area and pore size distribution of the pyrolyzed materials derived from the polymers were estimated from the nitrogen adsorption/desorption isotherms. Pyrolyzed membranes from polymer precursors exhibited type I sorption behavior except cellulose acetate (type IV). The gas permeation of the carbon/{\alpha}-alumina$ tubular membranes was characterized using four gases: helium, carbon dioxide, oxygen and nitrogen. The polyetherimide, polyimide, and phenolic resin pyrolyzed polymer membranes showed typical molecular sieving gas permeation behavior, while membranes from polyacrylonitrile and cellulose acetate exhibited intermediate behavior between Knudsen diffusion and molecular sieving. Pyrolyzed membranes with molecular sieving behavior (e.g., polyetherimide, polyimide, and phenolic resin) had a $CO_2/N_2$ selectivity of greater than 15; however, the membranes from polyacrylonitrile and cellulose acetate with intermediate gas transport behavior had a selectivity slightly greater than unity due to their large pore size.

Analysis of Minor Additives and Polymer in Used-stripper Using Pyrolysis-Gas Chromatography/Mass Spectrometry and Electrospray Mass Spectrometry

  • Koo, Jeong-Boon;Park, Chang-Hyun;Han, Cheol;Na, Yun-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.368-372
    • /
    • 2009
  • The trace polymer and additives in used stripper solutions were analyzed by a combination of Py-GC/MS and ESI-MS. In the comparison of the pyrolysates produced by the pyrolysis of the pure stripper and photoresist at $500{^{\circ}C}$, the presence of novolac polymer in the used stripper was confirmed by the presence of the characteristic peaks of its pyrolysates, such as those of the methylphenol, di-methylphenol and methylenebis(methylphenol) isomers. The intact trace polymer was measured by ESI-MS, which showed the distribution of oligomers at intervals of 120 Da, indicating di-methylphenol to be the repeat unit. Additional MS/MS measurements demonstrated that the end group is methylphenol and the repeat groups are di-methylphenol. Some modified oligomers caused by the methylation or di-methylation of the repeat unit were also identified. Although the polymer is only present at a trace level in the used stripper, these combined analytical methods provided the means to qualify the stripper solution through the identification and structural determination of the polymer.

Pyrolysis Paths of Polybutadiene Depending on Pyrolysis Temperature

  • Choi Sung-Seen;Han Dong-Hun
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.354-358
    • /
    • 2006
  • Polybutadiene (BR) was pyrolyzed at $540-860^{\circ}C$ and the effect of pyrolysis temperature on variations in the relative abundance of the major pyrolysis products (C4-, C5-, C6-, C7-, and C8-species) was investigated. Formation of the C4-, C5-, C6-, and C7-species competed with that of the C8-species. Relative intensity of the C8-species decreased with increasing pyrolysis temperature, while that of the C5-, C6-, and C7-species increased. Pyrolysis paths were became more complicated with increasing pyrolysis temperature. We suggested the operation of double bond migration and succeeding rearrangements for the formation of the C5- and C7-species and various rearrangements, including a double bond, for the formation of the C6-species at high temperature. The activation energies for the pyrolysis product ratios of(C5+C6+C7)/C4 and C8/C4 were used to explain the competition reactions to form the pyrolysis products.

Parametric study on synthesis of carbon nanotubes by the vertical spray pyrolysis method

  • Park, Young-Soo;Huh, Mong-Young;Kang, Sin-Jae;Lee, Seung-Hee;An, Kay-Hyeok
    • Carbon letters
    • /
    • v.12 no.2
    • /
    • pp.102-106
    • /
    • 2011
  • Carbon nanotubes (CNTs) have been synthesized by ferrocene-catalyzed pyrolysis of toluene. The influences of the experimental conditions on the morphology and microstructure of the product have been analyzed. To find the proper temperature for synthesis of CNTs, the experiment was performed in a temperature range from 800 to $1100^{\circ}C$. From content variation of ferrocene and thiophene as the catalyst, morphological change of carbon nanotubes has been observed. Also, the influence of the gas ratio of hydrogen and argon on the nanotube samples was analyzed by scanning electron microscopy and transmission electron microscopy.