Browse > Article

Gas Separation of Pyrolyzed Polymeric Membranes: Effect of Polymer Precursor and Pyrolysis Conditions  

Jung, Chul-Ho (School of Chemical Engineering, College of Engineering, Hanyang University)
Kim, Gun-Wook (School of Chemical Engineering, College of Engineering, Hanyang University)
Han, Sang-Hoon (School of Chemical Engineering, College of Engineering, Hanyang University)
Lee, Young-Moo (School of Chemical Engineering, College of Engineering, Hanyang University)
Publication Information
Macromolecular Research / v.15, no.6, 2007 , pp. 565-574 More about this Journal
Abstract
In this study, five representative, commercially available polymers, Ultem 1000 polyetherimide, Kapton polyimide, phenolic resin, polyacrylonitrile and cellulose acetate, were used to prepare pyrolyzed polymer membranes coated on a porous {\alpha}-alumina$ tube via inert pyrolysis for gas separation. Pyrolysis conditions (i.e., final temperature and thermal dwell time) of each polymer were determined using a thermogravimetric method coupled with real-time mass spectroscopy. The surface area and pore size distribution of the pyrolyzed materials derived from the polymers were estimated from the nitrogen adsorption/desorption isotherms. Pyrolyzed membranes from polymer precursors exhibited type I sorption behavior except cellulose acetate (type IV). The gas permeation of the carbon/{\alpha}-alumina$ tubular membranes was characterized using four gases: helium, carbon dioxide, oxygen and nitrogen. The polyetherimide, polyimide, and phenolic resin pyrolyzed polymer membranes showed typical molecular sieving gas permeation behavior, while membranes from polyacrylonitrile and cellulose acetate exhibited intermediate behavior between Knudsen diffusion and molecular sieving. Pyrolyzed membranes with molecular sieving behavior (e.g., polyetherimide, polyimide, and phenolic resin) had a $CO_2/N_2$ selectivity of greater than 15; however, the membranes from polyacrylonitrile and cellulose acetate with intermediate gas transport behavior had a selectivity slightly greater than unity due to their large pore size.
Keywords
gas separation; polyimide; phenolic resin; polyacrylonitrile; cellulose acetate; pyrolized membrane;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 D. Q. Vu, W. J. Koros, and S. J. Miller, J. Membrane Sci., 211, 311 (2003)   DOI   ScienceOn
2 A. Singh-Ghosal and W. J. Koros, J. Membrane Sci., 174, 177 (2000)
3 W. Zhou, et al., J. Membrane Sci., 217, 55 (2003)   DOI
4 Y. K. Kim, H. B. Park, and Y. M. Lee, J. Membrane Sci., 251, 159 (2005)   DOI   ScienceOn
5 H. M. Jeong, M. Y. Choi, and Y. T. Ahn, Macromol. Res., 14, 312 (2006)   과학기술학회마을   DOI
6 D. K. Kim, et al., Macromol. Res., 13, 521 (2005)   DOI
7 J. Hayashi, et al., Ind. Eng. Chem. Res., 34, 4364 (1995)
8 M. Yamaoto, et al., J. Membrane Sci., 133, 195 (1997)
9 Y. K. Kim, H. B. Park, and Y. M. Lee, J. Membrane Sci., 226, 145 (2003)   DOI
10 W. Zhou, et al.,lnd. Eng. Chem. Res., 40, 4801 (2001)   DOI   ScienceOn
11 W. Wei, et al., Carbon, 40, 465 (2002)
12 S. M. Saufi and A. F. Ismail, Carbon, 42, 241 (2004)   DOI   ScienceOn
13 C. Liang, G. Sha, and S. Guo, Carbon, 37, 1391 (1999)
14 E. P. Barrett, L. G. Joyner, and P. P. Halenda, J. Am. Chem. Soc., 73, 373 (1951)
15 M. Perez-Mendoza, et al., Carbon, 44, 638 (2006)   DOI   ScienceOn
16 Jeffrey C. S. Wu, D. F. Flowers, and P. K. T. Liu, J. MembraneSci., 77, 85 (1993)
17 T. A. Centeno and A. B. Fuertes, Sep. Purif. Technol., 25, 379 (2001)   DOI
18 J. Gilron and A. Soffer, J. Membrane Sci., 209, 339 (2002)
19 M. G. Sedigh, et al., Ind. Eng. Chem. Res., 38, 3367 (1999)   DOI   ScienceOn
20 X. Zhang, et al., Sep. Purif. Technol., 52, 261 (2006)   DOI   ScienceOn
21 A. F. Ismail and L. I. B. David, J. Membrane Sci., 193, 1 (2001)   DOI   ScienceOn
22 D.o.B.-R.L. Sadtler Research Laboratories The Infrared Spectra Atlas of Monomers and Polymers, 1984
23 A. Lapkin, Membr. Tech., 116, 5 (1999)
24 R. K. Mariwala and H. C. Foley, Ind. Eng. Chem. Res., 33, 607 (1994)
25 H. Suda and K. Haraya, J. Phys. Chem. B, 101, 3988 (1997)
26 J. Hayashi, et al., Ind. Eng. Chem. Res., 35, 4176 (1996)
27 B. Grzyb, et al., J. Anal. Appl. Pyrol., 67, 77 (2003)   DOI   ScienceOn
28 L. I. B. David and A. F. Ismail, J. Membrane Sci., 213, 285 (2003)   DOI
29 S. H. Park, et al., Macromol. Res., 11, 157 (2003)   DOI
30 T. A. Centeno, J. L. Vilas, and A. B. Fuertes, J. Membrane Sci., 228, 45 (2004)   DOI   ScienceOn
31 D. S. Kim, et al., Macromol. Res., 13, 314 (2005)   DOI
32 I. Mochida and S. Kawano, Ind. Eng. Chem. Res., 30, 2322 (1991)
33 H. Suda and K. Haraya, Chem. Commun., 93 (1997)