Browse > Article

Pyrolysis Paths of Polybutadiene Depending on Pyrolysis Temperature  

Choi Sung-Seen (Department of Applied Chemistry, Sejong University)
Han Dong-Hun (Department of Applied Chemistry, Sejong University)
Publication Information
Macromolecular Research / v.14, no.3, 2006 , pp. 354-358 More about this Journal
Abstract
Polybutadiene (BR) was pyrolyzed at $540-860^{\circ}C$ and the effect of pyrolysis temperature on variations in the relative abundance of the major pyrolysis products (C4-, C5-, C6-, C7-, and C8-species) was investigated. Formation of the C4-, C5-, C6-, and C7-species competed with that of the C8-species. Relative intensity of the C8-species decreased with increasing pyrolysis temperature, while that of the C5-, C6-, and C7-species increased. Pyrolysis paths were became more complicated with increasing pyrolysis temperature. We suggested the operation of double bond migration and succeeding rearrangements for the formation of the C5- and C7-species and various rearrangements, including a double bond, for the formation of the C6-species at high temperature. The activation energies for the pyrolysis product ratios of(C5+C6+C7)/C4 and C8/C4 were used to explain the competition reactions to form the pyrolysis products.
Keywords
polybutadiene; pyrolysis path; mechanism; pyrolysis temperature;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 R. S. Lehrle and J. C. Robb, Nature, 183, 1671 (1959)   DOI
2 G. N. Ghebremeskel and C. Hendrix, in Proceedings of the Rubber Division 152nd Meeting, American Chemical Society, Paper No. 72 (1997)
3 J. Hacaloglu, T. Ersen, N. Ertugrul, M. M. Fares, and S. Suzer, Eur. Polym. J., 33, 199 (1997)   DOI   ScienceOn
4 S.-S. Choi, Bull. Kor. Chem. Soc., 20, 1348 (1999)
5 F. Chen and J. Qian, Fuel Proc. Technol., 67, 53 (2000)
6 S. H. Kang, D. C. Ku, J. H. Lim, Y. K. Yang, N. S. Kwak, and T. S. Hwang, Macromol. Res. 13, 212 (2005)   DOI
7 E. A. Radell and H. C. Strutz, Anal. Chem., 31, 1890 (1959)   DOI
8 D. Braun and E. Canji, Angew Makromol. Chem., 29/30, 491 (1973)
9 M. Phair and T. Wampler, in Proceedings of the Rubber Division 150th Meeting, American Chemical Society, Paper No. 69 (1996)
10 R. F. C. Brown, Pyrolytic Methods in Organic Chemistry, Academic Press, New York, 1980
11 S. Ucar, S. Karagoz, A. R. Ozkan, and J. Yanik, Fuel, 84, 1884 (2005)   DOI   ScienceOn
12 G. N. Ghebremeskel, J. K. Sekinger, J. L. Hoffpaiur, and C. Hendrix, Rubber Chem. Technol., 69, 874 (1996)   DOI   ScienceOn
13 J. Hacaloglu and T. Ersen, Rapid Commun. Mass Spectrom., 12, 1793 (1998)   DOI   ScienceOn
14 W. Kaminsky and C. Mennerich, J. Anal. Appl. Pyrolysis, 58-59, 803 (2001)   DOI
15 S.-S. Choi, J. Anal. Appl. Pyrolysis, 57, 249 (2001)   DOI   ScienceOn
16 H. R. Schulten, B. Plage, and R. P. Lattimer, Rubber Chem. Technol., 62, 698 (1989)   DOI
17 M. J. Hackathorn and M. J. Brock, Rubber Chem. Technol., 45, 1295 (1972)   DOI   ScienceOn
18 S. B. Martin, J. Chromatogr., 2, 272 (1959)   DOI   ScienceOn
19 J. C. W. Chien and J. K. Y. Kiang, Eur. Polym. J., 15, 1059 (1979)   DOI   ScienceOn
20 R. P. Lattimer, R. E. Harris, C. K. Rhee, and H. R. Schulten, Rubber Chem. Technol., 61, 639 (1988)   DOI   ScienceOn
21 R. P. Lattimer, J. Anal. Appl. Pyrolysis, 39, 115 (1997)   DOI   ScienceOn